
The Simplex Method

Eklavya Sharma

This document describes the simplex method for solving linear programs.

1 Preliminaries

Theorem 1. Any linear programming problem can be reduced to the following problem
(called a standard form linear program):

min
x∈Rn

cTx where Ax = b and x ≥ 0.

Here A ∈ Rm×n, b ∈ Rm and c ∈ Rn.

We will also assume without loss of generality that rank(A) = m.

Lemma 2. Let B = [u1, u2, . . . , un] be a basis of a vector space V . Let w =
∑n

i=1 λiui.
Then B′ = B − {ur} ∪ {w} is a basis of V iff λr ̸= 0.

1.1 Notation

For any non-negative integer n, let [n] := {1, 2, . . . , n} (or [n] := [1, 2, . . . , n], depending
on the context).

Definition 1. Let stdLP(A, b, c) denote this LP:

min
x≥0

cTx where Ax = b.

2 Bases

Consider this linear program:

min
x∈Rn

cTx where Ax = b and x ≥ 0.

Here A ∈ Rm×n, b ∈ Rm and c ∈ Rn.

Definition 2 (Basis). Let J be a sequence of m distinct numbers from [n]. Let B :=
A[∗, J]. Then J is called a basis of the LP iff rank(B) = m. J is called a feasible basis
iff it is a basis and B−1b ≥ 0.

Let J be the increasing sequence of values of [n] that are not in J . Define solve(J)
as a vector x̂ ∈ Rn, where x̂[J] = B−1b and x̂[J] = 0.

1

https://sharmaeklavya2.github.io/theoremdep/nodes/linear-algebra/matrices/rank.html

The following two results show that to find an optimal BFS of the LP, we can find a
feasible basis J that minimizes cT solve(J), and then return solve(J).

Lemma 3. Let J be a feasible basis and x̂ = solve(J). Then x̂ is a BFS of the LP.

Lemma 4. Let x̂ be a BFS of the LP. Then there exists a feasible basis J such that
x̂ = solve(J).

3 The Simplex Algorithm

See Algorithm 1 for the description of the simplex algorithm. The input to the algorithm is
(A, b, c, J), where J is a feasible basis of Ax = b. The algorithm initializes a data structure
D using J (by calling the subroutine simplexInit), and then iteratively updates J and
the data structure D (by calling subroutines simplexMove and updateDS). Specifically,
if the status output by simplexMove is move, then it outputs a pair (k, r) of integers,
where k ∈ [n]− J and r ∈ [m]. It then sets the rth element of J to k. We say that J [r]
leaves the basis and k enters the basis.

Algorithm 1 simplex(A, b, c, J): A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and J is a feasible basis
for stdLP(A, b, c).

1: // contains some Python assignment syntax
2: D = simplexInit(A, b, c, J)
3: while true do
4: status, *outs = simplexMove(D, J)
5: // status can be optimal, unbounded, or move.
6: // outs is a list
7: if status == move then
8: (k, r, δ) = outs

9: J [r] = k
10: D = updateDS(D, J, k, r)
11: else
12: return (status, J, *outs)
13: end if
14: end while

There are different variants of the simplex algorithm, depending on what data struc-
ture D they maintain. We will look at 3 variants: naive simplex, tableau simplex, and
revised simplex. In the naive simplex method, we set D := (A, b, c). Hence, simplexInit
and updateDS are trivial for naive simplex. The main advantage of tableau and revised
over naive is that they speed up simplexMove.

Definition 3. Let J := [j1, . . . , jm] be a basis of stdLP(A, b, c), where A ∈ Rm×n, and let
k ∈ [n] − J . Let B := A[∗, J] and Y := B−1A. Then define direction(J, k) ∈ Rn as the
vector y where

yt =

−Y [i, k] if t = ji

1 if t = k

0 otherwise

.

2

https://docs.python.org/3/reference/simple_stmts.html#assignment-statements

The core of the simplex algorithm is simplexMove, which tells us how to move
from one basis to another. simplexMove is described in Algorithm 2. Specifically,
when simplexMove(D, J) outputs (move, k, r, δ), it moves from solve(J) to solve(J) +
δ direction(J, k) (we will prove this soon).

Algorithm 2 simplexMove(D, J): J is a feasible basis of stdLP(A, b, c).

1: Let B := A[∗, J], Y := B−1A, b := B−1b, and z = Y T c[J].
2: // We will lazily compute B, Y , b, and z using D.
3: if c− z ≥ 0 then
4: return (optimal, solve(J), c[J]T b)
5: end if
6: Find k ∈ [n] such that ck − zk < 0.
7: if Y [∗, k] ≤ 0 then
8: return (unbounded, solve(J), direction(J, k), k)
9: end if

10: r = argmin
i∈[m]:Y [i,k]>0

bi
Y [i, k]

11: δ = br/Y [r, k]
12: return (move, k, r, δ).

Since simplexMove requires J to be a feasible basis of stdLP(A, b, c), and we’re chang-
ing J in line 9, we need to prove that after this change, J continues to be a feasible basis
of stdLP(A, b, c).

Theorem 5. If simplex outputs (optimal, J, x̂, β), then x̂ is a BFS of the LP and an
optimal solution to the LP. Furthermore, x̂ = solve(J) and β = cT x̂.

Proof sketch. For any feasible x, we can show that cTx = c[J]T b+ (c− z)[J]Tx[J]. Since
c[J]T b = cT x̂, x[J] ≥ 0, and c− z ≥ 0, we get cTx ≥ cT x̂.

Lemma 6. z[J] = c[J].

Proof. z[J]T = c[J]T (B−1A)[∗, J] = c[J]TB−1A[∗, J] = c[J]T .

Lemma 6 implies that k ̸∈ J , since ck − zk < 0.

Lemma 7. Y [∗, J] = I. Let J = [j1, j2, . . . , jm]. Then Y [i, jp] =

{
1 if p = i

0 if p ̸= i
.

Lemma 8. Let y = direction(J, k). Then Y y = Ay = 0.

Lemma 9. Let y := direction(J, k). Then cTy = ck − zk.

Theorem 10. If simplex outputs (unbounded, J, x̂, y, k), then the LP’s cost reduces along
the ray {x̂+ λy : λ ≥ 0} and the ray is feasible, which implies that the LP is unbounded.
Furthermore, y ≥ 0, x̂ = solve(J), and y = direction(J, k).

Lemma 11. Suppose simplexMove(D, J) outputs (move, k, r, δ). Let J̃ be the new se-

quence obtained by changing J [r] to k (at line 9 of simplex). Then J̃ is a basis of the
LP.

3

Proof. Let J = [j1, j2, . . . , jm]. The set of values in J̃ is J − {jr} ∪ {k}. Since k ̸∈ J , J̃
has distinct values.

Let aj be the jth column of A. Let B = A[∗, J]. Let B̃ = A[∗, J̃]. Let S =

{aj1 , aj2 , . . . , ajm} be the set of columns of B and let S̃ = S − {ajr} ∪ {ak} be the set

of columns of B̃. Since J is a basis, rank(B) = m, so S is a set of linearly independent
vectors. Since |S| = m, we get that S is a basis of Rm. Hence, ak ∈ span(S).

Let ak =
∑m

i=1 λiaji . Let λ = [λ1, λ2, . . . , λm]. Then Bλ =
∑m

i=1 λiaji = ak. Hence,
λ = B−1ak = Y [∗, k]. Since Y [r, k] > 0, we get that λr > 0. Hence, by Lemma 2, we get

that S̃ is also a basis of Rm. Hence, rank(B̃) = m, so J̃ is a basis.

Lemma 12. Suppose simplexMove(D, J) outputs (move, k, r, δ). Let J̃ be the new se-

quence obtained by changing J [r] to k (at line 9 of simplex). Then J̃ is a feasible basis
of the LP. Furthermore, let y = direction(J, k), x̂ = solve(J), and x̃ = x̂ + δy. Then

x̃ = solve(J̃) and cT x̃ ≤ cT x̂.

Proof sketch. We can show that Ax̃ = b, x̃ ≥ 0, and x̃j = 0 when j ̸∈ J̃ . Let B̃ := A[∗, J̃].
Then b = Ax̃ = A[∗, J̃]x̃[J̃] = B̃x̃[J̃]. So, x̃[J̃] = B̃−1b, which implies x̃ = solve(J̃).
Also, cT (x̃− x̂) = δ(cTy) = δ(ck − zk) ≤ 0 by Lemma 9.

This completes the correctness of simplex.

4 Implementations of Simplex

The naive simplex method has a large running time of O(m2(m+n)) per iteration, since
we compute B−1, Y , b and z afresh in each iteration. We will now see how the tableau
method and the revised simplex method improve the running time per iteration.

In the Tableau method, the data structure D is[
c− z −c[J]T b

Y b

]
,

where the rows are numbered from 0 instead of 1. In the Revised simplex method, the
data structure D is given by the pair (D1, D2), where D1 := (A, b, c) and

D2 :=

[
−c[J]TB−1 −c[J]T b

B−1 b

]
,

where the rows are numbered from 0 instead of 1. It is easy to see that we can quickly
compute Y , b, and c− z in simplexMove in both methods. simplexInit is implemented
in the obvious straightforward way. We will now see how to implement updateDS using
elementary row operations.

Definition 4 (pivoting). Let A ∈ Rm×n be a matrix, i ∈ [m], and j ∈ [n] such that
A[i, j] ̸= 0. Then pivoting is the operation of applying elementary row operations to A to

get a new matrix Â ∈ Rm×n such that Â[i, j] = 1 and Â[i′, j] = 0 for all i′ ∈ [m]− {i}.

4

In the tableau method, updateDS(D, J, k, r) is performed by pivoting D at (r, k). In
the revised simplex method, updateDS(D, J, k, r) is performed by horizontally concate-

nating the column

[
ck − zk
Y [∗, k]

]
to D2, (which becomes the (m + 2)th column), pivoting at

(r,m+ 2), and then discarding the (m+ 2)th column.

Let J be a feasible basis of the LP. Let B := A[∗, J], Y := B−1A, b := B−1b and
z := Y T c[J]. Based on how k and r are chosen, we know that ck−zk < 0, Y [r, k] > 0, and

r ∈ argmini∈[m]:Y [i,k]>0
bi

Y [i,k]
. Let J̃ be the sequence obtained by changing the rth element

of J to k. By Lemma 12, J̃ is a feasible basis. Let B̃ := A[∗, J̃], Ỹ := B̃−1A, b̃ := B̃−1b

and z̃ := Ỹ T c[J̃]. We will now see how to compute Ỹ , z̃ and b̃ from Y , z and b.

Define the matrix Ŷ as

Ŷ [i, j] =

Y [r, j]

Y [r, k]
if i = r

Y [i, j]− Y [i, k]

Y [r, k]
Y [r, j] if i ̸= r

.

Note that Ŷ is obtained from Y by pivoting on (r, k). Let R be the matrix of these row

operations. Then Ŷ = RY . We can find R by applying these row operations to the
m-by-m identity matrix.

R[i, j] =

I[r, j]

Y [r, k]
if i = r

I[i, j]− Y [i, k]

Y [r, k]
I[r, j] if i ̸= r

=

1

Y [r, k]
if i = r = j

−Y [i, k]

Y [r, k]
if i ̸= r ∧ j = r

1 if i ̸= r ∧ j = i

0 if j ̸∈ {i, r}

.

Lemma 13. B̃−1 = RB−1 and Ỹ = RY and b̃ = Rb.

Define ẑ ∈ Rn and η as

ẑj = zj +
ck − zk
Y [r, k]

Y [r, j] η = c[J]T b+
ck − zk
Y [r, k]

br.

Lemma 14. ẑ = z̃ and η = c[J̃]T b̃.

In the revised simplex method, we can obtain further speedup in simplexMove. Com-
pute c[J]TB−1 by multiplying c[J]T and B−1. Then we iterate over j ∈ [n] − J̃ , and

compute zj = (c[J]TB−1)A[∗, j]. We stop iterating when we find a suitable k ∈ [n] − J̃

such that ck−zk < 0, or if cj−zj ≥ 0 for all j ∈ [n]−J̃ . Next, we compute u = B−1A[∗, k]
and b = B−1b. At the end of the iteration, we can update B−1 using row operations as
per Lemma 13. This is possible since R is defined by u.

5

The time taken is O(m(t + m)), where t is the number of variables that need to be
considered till we find k. Note that t ≤ n−m. The space complexity of revised simplex
(in addition to storing the input) is O(m2).

5 Duality

Definition 5 (Dual LP). The dual LP of stdLP(A, b, c) is defined to be the following LP:

max
w

bTw where ATw ≤ c.

We denote this LP as stdDLP(A, b, c).

Definition 6 (dual feasible basis). Let J be a basis of stdLP(A, b, c). J is called dual
feasible if c− z ≥ 0, where B := A[∗, J] and zT := c[J]TB−1A. Define dualSolve(J) as
(c[J]TB−1)T . (Note that z = AT dualSolve(J)).

Lemma 15. Let J be a dual feasible basis and ŵ := dualSolve(J). Then ŵ is a BFS of
stdDLP(A, b, c).

Lemma 16. Let ŵ be a BFS of stdDLP(A, b, c). Then there exists a dual feasible basis
J of stdLP(A, b, c) such that ŵ = dualSolve(J).

Lemma 17. Let J be a basis of stdLP(A, b, c). Let x̂ := solve(J) and ŵ := dualSolve(J).
Then cT x̂ = bT ŵ = c[J]T b. Furthermore, if J is both feasible and dual feasible, then x̂
and ŵ are optimal solutions to stdLP(A, b, c) and stdDLP(A, b, c), respectively.

6 Properties of Solutions

Definition 7 (degeneracy). Let A ∈ Rm×n. Let J be a basis of stdLP(A, b, c). Let
B := A[∗, J] and zT := c[J]TB−1b.

• A solution x̂ to Ax = b is called degenerate for stdLP(A, b, c) if | support(x̂)| < m.

• ŵ ∈ Rm is called degenerate for stdDLP(A, b, c) if | support(c− ATw)| < n−m.

• J is called primal degenerate if (B−1b)i = 0 for some i ∈ [m].

• J is called dual degenerate if (c− z)j = 0 for some j ∈ [n]− J .

Lemma 18. Let J be a basis of stdLP(A, b, c). Then solve(J) is degenerate iff J is
primal degenerate, and dualSolve(J) is degenerate iff J is dual degenerate.

6.1 Multiple Bases for Same Point

Lemma 19. Let J1 and J2 be two bases of stdLP(A, b, c) such that sorted(J1) ̸= sorted(J2)
and x̂ := solve(J1) = solve(J2). Then x̂ is degenerate for stdLP(A, b, c).

Lemma 20. Let J1 and J2 be two bases of stdLP(A, b, c) such that sorted(J1) ̸= sorted(J2)
and ŵ := dualSolve(J1) = dualSolve(J2). Then ŵ is degenerate for stdDLP(A, b, c).

6

The converse of Lemmas 19 and 20 is not true.

Example 1. Let A =

[
1 0 0
0 1 0

]
, b = [0, 0]T , and c = [0, 0, 0]T . Then J = [0, 1] is the

unique basis (up to permutation) of stdLP(A, b, c). However, both solve(J) = [0, 0, 0]
and dualSolve(J) = [0, 0] are degenerate.

6.2 Degeneracy and Optimality

Lemma 21 (dual non-degen =⇒ unique primal opt). Let J be a dual feasible and dual
non-degenerate basis of stdLP(A, b, c). Let x̂ := solve(J). Let P be the set of feasible
solutions to stdLP(A, b, c). Then cT x̂ < minx∈P−{x̂} c

Tx. (Hence, if J is feasible, then x̂
is a unique optimum of stdLP(A, b, c).)

Proof sketch. For any x ∈ P , we can show that cTx = c[J]T b + (c − z)[J]Tx[J]. Since
c[J]T b = cT x̂, x[J] ≥ 0, x[J] ̸= 0 (since x ̸= x̂), and (c − z)[J] > 0 (by dual feasibility
and dual non-degeneracy of J), we get cTx > cT x̂.

Lemma 22 (primal non-degen =⇒ unique dual opt). Let J be a primal feasible and pri-
mal non-degenerate basis of stdLP(A, b, c). Let ŵ := dualSolve(J) and x̂ := solve(J).
Let Q be the set of feasible solutions to stdDLP(A, b, c). Then bT ŵ > maxw∈Q−{ŵ} b

Tw.
(Hence, if J is dual feasible, then ŵ is a unique optimum of stdDLP(A, b, c).)

Proof. Let w ∈ Q − {ŵ}. So, cT − wTA ≥ 0. Suppose (cT − wTA)[J] = 0. Then
wT = B−1c[J] = ŵ, which is not possible. Hence, ∃j ∈ J such that cj − (wTA)j > 0.

We have bTw = wTAx̂ = (wTA)[J]b and bT ŵ = c[J]T b. Since J is feasible and primal
non-degenerate, b > 0. Hence, bT ŵ− bTw = (c[J]−wTA)[J]b ≥ (cj − (wTA)j)bj > 0.

Lemma 23 (primal non-degen and dual degen =⇒ non-unique primal opt). Let J
be a feasible basis of stdLP(A, b, c) that is primal non-degenerate and dual degenerate.
Let x̂ := solve(J). Then ∃ a feasible solution x̃ to stdLP(A, b, c) such that x̃ ̸= x̂ and
cT x̃ = ctx̂.

Proof sketch. Find k such that ck − zk = 0 and then try to pivot.

Lemma 24 (primal degen and dual non-degen =⇒ non-unique dual opt). Let J be a
dual feasible basis of stdLP(A, b, c) that is primal degenerate and dual non-degenerate. Let
x̂ := solve(J) and ŵ := solve(J). Then ∃ a dual feasible solution w̃ to stdDLP(A, b, c)
such that w̃ ̸= ŵ and bT w̃ = btŵ.

Proof sketch. Find r such that br = 0 and then try to pivot.

Example 2. Let b = 0, c = (0, 0). Let J be any basis of stdLP(A, b, c) (|J | = 1). Let
x̂ := solve(J) and ŵ := dualSolve(J). b = B−1b = 0, so x̂ = (0, 0), which is feasible
for stdLP(A, b, c). ŵT = c[J]TB−1 = 0, so ŵ = 0. c− AT ŵ = (0, 0), so ŵ is feasible for
stdDLP(A, b, c). Hence, J is primal feasible and dual feasible. Since b = 0, J is primal
degenerate. Since (c− AT ŵ)[J] = 0, J is dual degenerate.

Let P and Q be the set of feasible solutions to the primal and dual LPs, respectively.
Since the objective function is 0 for both LPs, unique primal optimal solution exists iff
P = {(0, 0)}, and unique dual optimal solution exists iff Q = {0}.

7

• If A = [1, 1], then P = {(0, 0)} and Q = (−∞, 0].

• If A = [1,−1], then P = {(x, x) : x ≥ 0} and Q = {0}.

• If A = [1, 0], then P = {(0, y) : y ≥ 0} and Q = (−∞, 0].

Table 1: Unique primal optimum?

dual degen dual non-degen
primal degen depends yes

primal non-degen no yes

Table 2: Unique dual optimum?

dual degen dual non-degen
primal degen depends no

primal non-degen yes yes

8

	1 Preliminaries
	1.1 Notation

	2 Bases
	3 The Simplex Algorithm
	4 Implementations of Simplex
	5 Duality
	6 Properties of Solutions
	6.1 Multiple Bases for Same Point
	6.2 Degeneracy and Optimality

