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1 Polyhedra

Example 1 (Square Pyramid). Let

P := {(x, y, z) : max(|x|, |y|) ≤ z, z ≤ 1}
= {(x, y, z) : x ≤ z,−x ≤ z, y ≤ z,−y ≤ z, z ≤ 1}.

Then P is an (inverted) square pyramid. The base of the pyramid is [−1, 1]2 × {1}. Its
vertices are (0, 0, 0), (−1,−1, 1), (−1, 1, 1), (1,−1, 1), (1, 1, 1).

Example 2 (Square Pyramid). Let

P := {(x, y, z) : x ≤ z, y ≤ z, x ≥ 0, y ≥ 0, z ≥ 0}.

Then P is an (inverted) square pyramid. The base of the pyramid is [0, 1]2 × {1}. Its
vertices are (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1).

Example 3 (Introducing degeneracy by changing RHS to 0). Let P := {x : (aTi x = bi∀i ∈
E) and (aTi x ≤ bi∀i ∈ E)}. Let D := {x : (aTi x = 0∀i ∈ E) and (aTi x ≤ 0∀i ∈ E)}.
Then D is the set of directions of P . If P is bounded, then D = {0}. Now all bases of D
correspond to the same point. If P has multiple bases, then 0 is a degenerate point of D.
Furthermore, the simplex method can be made to run on P and D with the same pivots.

Example 4 (Non-extreme point with n active constraints). Let P := {(x, y) : x +
y ≥ 1, x + y ≤ 1, x ≥ 0, y ≥ 0}. No constraint is redundant. (1, 0) and (0, 1) are
degenerate BFSes of P . Their midpoint, (1/2, 1/2), is not an extreme point, but has 2
active constraints (which are linearly dependent).

1.1 Degeneracy vs Redundancy

Example 5 (Redundancy ⇏ Degeneracy). Let P := {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.
Then every extreme-point is non-degenerate. Adding the constraint y ≤ 2 doesn’t add
degeneracy but adds redundancy.

Example 6 (Degeneracy ⇏ Redundancy). Let P := {(x, y) : y ≤ x, y ≤ −x, y ≥ 0} (so
P = {(0, 0)}). Then (0, 0) is a degenerate extreme point, but no constraint is redundant.

Example 7 (Degeneracy ⇏ Redundancy). Let P be a square pyramid (c.f. Example 1).
Then there is a degenerate extreme point but no constraint is redundant.
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2 Simplex Method

Example 8. Let b ∈ R≥0 and a ∈ Rn, where 0 < a1 < a2 < . . . < an. Consider the LP

max
x≥0

aTx where
n∑

i=1

xi ≤ b.

Clearly, the optimal solution is [0, 0, . . . , 0, b]. In standard form, the LP becomes

min
x≥0

n∑
i=1

(−ai)xi where
n+1∑
i=1

xi = b.

Suppose our initial basis is {xn+1}. For ease of notation, let x0 := xn+1.

If we run the simplex method with Bland’s rule (variable of lowest index enters basis),
then there will be n iterations, where in the ith iteration, xi enters the basis and xi−1

leaves the basis. Hence, we visit each of the n+ 1 bases. If b > 0, each basis corresponds
to a unique BFS. If b = 0, all bases correspond to the same BFS 0.

If we run the simplex method with Dantzig’s rule (variable of most negative reduced
cost enters basis), then there will be just 1 iteration where xn enters and xn+1 leaves.

Example 9. For the following LP, where b ∈ R≥0, the optimal solution is (b, 0).

max
x≥0,y≥0

2x+ 3y where x+ 2y ≤ b.

Bland’s rule takes 1 iteration but Dantzig’s rule takes 2 iterations. There are 3 bases.
When b > 0, each base corresponds to a different BFS. When b = 0, all bases correspond
to the same BFS 0.

Example 10 (Unique basis and degeneracy). Let P := {(x, y, z) : x + y = 2b, x − y =
0, x ≥ 0, y ≥ 0, z ≥ 0}, be a standard form polyhedron. Then {x, y} is the only basis, and
the corresponding solution is (b, b, 0). The solution is degenerate iff b = 0.
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