Linear Programming Duality

Eklavya Sharma

1 Definition

Let $A \in \mathbb{R}^{m \times n}, I \subseteq[m], J \subseteq[n]$. Define the linear program $P:=\mathrm{LP}(A, b, c, I, J)$ as $\min _{x \in \mathbb{R}^{n}: x_{J} \geq 0} c^{T} x \quad$ where $\quad\left((A x)_{i} \geq b_{i}, \forall i \in I\right)$ and $\left((A x)_{i}=b_{i}, \forall i \in[m]-I\right)$

Then the dual of P is $D:=\operatorname{LP}\left(-A^{T},-c,-b, J, I\right)$, i.e.,

$$
\max _{y \in \mathbb{R}^{m}: y_{I} \geq 0} b^{T} y \quad \text { where } \quad\left(\left(A^{T} y\right)_{j} \leq c_{j}, \forall j \in J\right) \text { and }\left(\left(A^{T} y\right)_{j}=c_{j}, \forall j \in[n]-J\right)
$$

Lemma 1. Dual of dual is dual.
On setting $J=[n]$ and $I=[m]$, we get that the following are duals of each other

$$
P: \min _{x \geq 0} c^{T} x \text { where } A x \geq b \quad D: \max _{y \geq 0} b^{T} y \text { where } A^{T} y \leq c
$$

2 Method for Quick Application

Adapted from Sébastien Lahaie's notes.

1. Express problem in standard form:
(a) Express as a minimization problem.
(b) Write each (non-trivial) constraint as $f(x) \leq 0$ or $f(x)=0$.
(c) Write each trivial constraint as $x \geq 0$ (i.e., if $x \leq 0$, replace x by $-x$):

$$
\min _{x \in \mathbb{R}^{n}: x_{J} \geq 0} c^{T} x \quad \text { where } \quad\left(b_{i}-(A x)_{i} \leq 0, \forall i \in I\right) \text { and }\left(b_{i}-(A x)_{i}=0, \forall i \in[m]-I\right) .
$$

2. Add dual variables:
(a) Create a non-negative dual variable y_{i} for each inequality constraint $f_{i}(x) \leq 0$.
(b) Create an unrestricted dual variable y_{i} for each equality constraint $f_{i}(x)=0$.
(c) Remove the constraint and add the term $y_{i} f_{i}(x)$ to the objective.
(d) Maximize over dual variables.

$$
\max _{y \in \mathbb{R}^{m}: y_{I} \geq 0} \min _{x \in \mathbb{R}^{n}: x_{J} \geq 0} c^{T} x+y^{T}(b-A x) .
$$

3. Rearrange terms to express objective as an affine function of primal variables:

$$
\max _{y \in \mathbb{R}^{m}: y_{I} \geq 0} \min _{x \in \mathbb{R}^{n}: x_{J} \geq 0} b^{T} y+x^{T}\left(c-A^{T} y\right) .
$$

4. For each term $x_{j} g_{j}(y)$ in the objective, remove the term and add constraint
(a) $g_{j}(y) \geq 0$ if x_{j} is non-negative.
(b) $g_{j}(y)=0$ if x_{j} is unrestricted.
$\max _{y \in \mathbb{R}^{m}: y_{j} \geq 0} b^{T} y \quad$ where $\quad\left(c_{j}-\left(A^{T} y\right)_{j} \geq 0, \forall j \in J\right)$ and $\left(c_{j}-\left(A^{T} y\right)_{j}=0, \forall j \in[n]-J\right)$.
5. Rearrange into suitable form

$$
\max _{y \in \mathbb{R}^{m}: y_{j} \geq 0} b^{T} y \quad \text { where } \quad\left(\left(A^{T} y\right)_{j} \leq c_{j}, \forall j \in J\right) \text { and }\left(\left(A^{T} y\right)_{j}=c_{j}, \forall j \in[n]-J\right) .
$$

