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Definition 1 (Bidirecting a graph). Given an undirected graph G := (V,E), bidirection
is the process of replacing each undirected edge {u, v} by directed edges (u, v) and (v, u).

1 Traveling Salesman Problem (TSP)

Definition 2 (TSP). Let G := (V,E) be a directed graph (if G is undirected, bidirect it).
Each edge e ∈ E has a non-negative cost c(e). Find a simple cycle of length |V | (called
tour) having the minimum total cost.

If c(u, v) = c(v, u) ∀u ̸= v, then the problem is called symmetric.

Lemma 1 (Hard to approx). Symmetric TSP is NP-hard to approximate.

Proof. Let G := (V,E) be an undirected graph. Let α be an arbitrarily large number.
Create set c(u, v) = 1 if (u, v) ∈ E and c(u, v) = (α − 1)n + 2 otherwise. If G has a
Hamiltonian cycle, then the cheapest tour costs n. Otherwise, the cheapest tour costs
at least αn + 1. If there is an α-approx polynomial-time algorithm for symmetric TSP,
there is a polynomial-time algorithm for undirected Hamiltonian cycle.

Lemma 2 (Subtour elimination IP). Let xe be 1 if edge e is in the tour and 0 otherwise.
Then this IP finds the min-cost tour

min
x∈{0,1}|E|

cTx

where
∑

e∈δin(v)

xe = 1 ∀v ∈ V

and
∑

e∈δout(v)

xe = 1 ∀v ∈ V

and
∑

e∈δout(S)

xe ≥ 1 ∀S ⊂ V, 2 ≤ |S| ≤ |V | − 2

(Note that this IP has |E| binary variables and 2|V | − 2 constraints.)

Proof. It is easy to see that a tour satisfies this IP. Let x be a solution to the IP. Let
T := {e ∈ E : xe = 1}. By the first two constraint families, indegT (v) = outdegT (v) = 1
∀v ∈ V . Hence, T is a collection of disjoint cycles that span V . Let C be one of these
cycles. If |C| ≠ |V |, then 2 ≤ |C| ≤ |V |−2, and the last constraint is violated for S = C.
Hence, if x is feasible, then T is a tour. Hence, the set of feasible solutions to the IP is
also the set of feasible tours.
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Lemma 3 (MIP). Let V = [n]. Let xe be 1 if edge e is in the tour and 0 otherwise. Then
this MIP finds the min-cost tour

min
x∈{0,1}|E|,w∈Rn−1

cTx

where
∑

e∈δin(v)

xe = 1 ∀v ∈ V

and
∑

e∈δout(v)

xe = 1 ∀v ∈ V

and wi − wj + |V |xi,j ≤ |V | − 1 ∀(i, j) ∈ E ∩ [n− 1]× [n− 1]

(This MIP has |E| binary variables, |V |− 1 real variables, and ≤ 2|V |+ |E| constraints.)

Proof. Let {v1, v2, . . . , vn} be a valid tour, where vn = n. Let wvi = i. Then the IP is
satisfied. Let (x,w) be a feasible solution to the IP. Let T = {e ∈ E : xe = 1}. Then T is
a union of disjoint cycles that span V . Suppose there are multiple cycles in T . Let C be
a cycle that doesn’t contain vertex n. Adding together constraints from the last family
for (i, j) ∈ C, we get |V ||C| ≤ (|V | − 1)|C|, which is false. Hence, T is a valid tour.

Lemma 4 (DP). Let V = [n]. Let f(S, v) be the min cost of a simple path (or simple
cycle, if v = n) whose first vertex is n, last vertex is v, and the other vertices are
S ⊆ [n− 1]− {v}. Then

f(S, v) :=


0 if S = ∅ and v = n

c(n, v) if S = ∅ and v ̸= n

min
u∈S

(f(S − {u}, u) + c(u, v)) if S ̸= ∅
.

The cost of the optimal tour is f([n− 1], n). We can compute f(S, v) for all S ⊆ [n− 1]
and all v ∈ [n]− S in Θ(n22n) time using dynamic programming.

2 Facility Location

Let there be n facilities and m clients. The input is the tuple (c, b, u, h) where

1. c ∈ Rn
≥0 and cj is the cost of opening facility j.

2. b ∈ Rm
≥0 and bi is the demand of client i.

3. u ∈ Rn
≥0 and uj is the capacity of facility j.

4. h ∈ Rm×n
≥0 and hi,j is the cost of satisfying unit demand from client i by facility j.

In the capacitated facility location problem, we need to open some facilities and distribute
clients’ demand onto the open facilities such that the total demand at a facility is at most
its capacity and the cost is minimized.

Let xj ∈ {0, 1} be 1 iff we open facility j. Let yi,j ∈ [0, 1] be the fraction of client i’s
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demand satisfied by facility j. Then the MIP for this problem is

min
x∈{0,1}n, y∈Rm×n

≥0

n∑
j=1

cjxj +
m∑
i=1

n∑
j=1

hi,jyi,j

where
n∑

j=1

yi,j = bi ∀i ∈ [m]

and
m∑
i=1

yi,j ≤ ujxj ∀j ∈ [n]

Let B :=
∑m

i=1 bi. When uj ≥ B for all j, we say that the problem is uncapacitated.
In this case, we can assume without loss of generality that bi = 1 for all i. Hence, the
input can be specified using only the pair (c, h), and we have this MIP:

min
x∈{0,1}n, y∈Rm×n

≥0

n∑
j=1

cjxj +
m∑
i=1

n∑
j=1

hi,jyi,j

where
n∑

j=1

yi,j = 1 ∀i ∈ [m]

and yi,j ≤ xj ∀i ∈ [m],∀j ∈ [n]

2.1 Reduction from Set Cover

In the set cover problem, given a matrix A ∈ {0, 1}m×n and a vector c ∈ Rn
≥0, we need to

solve the IP:

min
x∈{0,1}n

cTx where Ax ≥ 1.

Let hi,j := α(1 − A[i, j]), for an arbitrarily large number α. This gives us an unca-
pacitated facility location instance (c, h). Solve it with x fixed to x̂. Let (x̂, ŷ) be the
optimal solution. Let β := cT x̂+ hT ŷ be the cost.

Lemma 5. If x̂ is a valid set cover (i.e., Ax̂ ≥ 1), then β = cT x̂. Otherwise, β = cT x̂+α.

Proof. If Ax̂ ≥ 1, then for all i ∈ [m], ∃ji ∈ [n] such that A[i, ji]x̂ji = 1. Let ỹi,j be 1 if
j = ji and 0 otherwise. Then (x̂, ỹ) is a feasible solution of cost cT x̂.

If Ax̂ ̸≥ 1, then ∃k ∈ [m] such that ∀j ∈ [n], A[k, j]x̂j = 0. Then ŷk,j > 0 =⇒ x̂j =
1 =⇒ A[k, j] = 0. Hence,

β ≥ cT x̂+
n∑

j=1

hk,j ŷk,j = cT x̂+ α
∑

j:ŷk,j>0

ŷk,j = cT x̂+ α.

Hence, if α > ∥c∥1, then (x̂, ŷ) is optimal for this facility location instance iff x̂ is
optimal for the set cover instance.
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3 Uncapacitated Lot-Sizing

We need to decide on an n-day production plan for a product. Days are numbered from
1 to n. We can choose to open a facility on some days. The facility will open in the
morning, produce goods, and close in the evening. Then some of the goods will be sent
to the client, and the rest of the goods (if any) will be stored in the warehouse overnight.

1. dt: client’s demand on day t.
2. ft: cost of opening the facility on day t.
3. pt: production cost per unit on day t.
4. ht: cost per unit stored in the warehouse at night on day t.

3.1 MIP Formulation 1

Decision variables:

1. xt ∈ R≥0: amount produced on day t.
2. yt ∈ {0, 1}: whether facility is open on day t.
3. st ∈ R≥0: amount in warehouse at night on day t, for t ∈ [n− 1]. s0 := 0, sn := 0.

Let Mt :=
∑n

i=t dt. MIP 1:

min
x∈Rn

≥0,y∈{0,1}n,s∈R
n−1
≥0

pTx+ hT s+ fTy

where st−1 + xt = dt + st ∀t ∈ [n]
and xt ≤ Mtyt ∀t ∈ [n]

Lemma 6. Consider the LP relaxation of MIP 1 where yt ∈ {0, 1} is replaced by yt ∈
[0, 1]. This LP relaxation is not integral.

Proof. Let n = 2. Let p = 0, h = 0, d1 = d2 = 1, f1 = 2, f2 = 0. Then every feasible
solution to the MIP has cost 2. However, the solution x1 = x2 = 1, s = 0, y1 = 1/2,
y2 = 1 is a basic feasible solution and has cost 1.

3.2 MIP Formulation 2

Decision variables:

1. zi,j ∈ R≥0: amount produced on day i to satisfy demand on day j. When i > j,
zi,j := 0.

2. yt ∈ {0, 1}: whether facility is open on day t.

MIP 2:

min
z∈Rn2

≥0,y∈{0,1}n

n∑
i=1

n∑
j=1

pizi,j +
n∑

t=1

ftyt +
n∑

i=1

n∑
j=1

(
j−1∑
k=i

hk

)
zi,j

where

j∑
i=1

zi,j = dj ∀j ∈ [n]

and zi,j ≤ djyi ∀1 ≤ i ≤ j ≤ n
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Theorem 7. Consider the LP relaxation of MIP 2 where yt ∈ {0, 1} is replaced by
yt ∈ [0, 1]. This LP relaxation is integral.

Proof. Theorem 3 in [1].

3.3 DP solution

Lemma 8 (Zero-inventory ordering). Fix y in MIP 1. Then in any extreme point solution
to MIP 1, xt > 0 =⇒ st−1 = 0.

Proof. Let (x̂, ŝ) be a solution to MIP 1 (after fixing y), where x̂t > 0 and ŝt−1 > 0. Then
t > 1 and yt = 1. Let k := maxt−1

i=1(yi = 1).

Let δ := min(ŝt−1, x̂t). Then δ > 0. Let ϵ ∈ [−δ, δ]. Define x̃(ϵ) and s̃(ϵ) as

x̃i(ϵ) := x̂i + ϵ


−1 if i = k

1 if i = t

0 otherwise

s̃i(ϵ) := ŝi − ϵ

{
1 if k ≤ i < t

0 otherwise

Then (x̃(ϵ), s̃(ϵ)) is also a feasible solution to the MIP. x̂ is the midpoint of x̃(δ) and
x̃(−δ), so x̂ is not an extreme point.

Let g(i, j) be the cost of the min-cost solution for days [j]− [i− 1], when yi = 1 and
yt = 0 for t ̸= i. We can compute g(i, j) in Θ(j − i) time in a straightforward manner.
In fact, we can also compute g(i, j) for all 1 ≤ i ≤ j ≤ n in Θ(n2) time.

Let f(j) be the cost of the min-cost for days [j]. Then by Lemma 8,

f(j) =

0 if j = 0
j

min
i=1

(f(i− 1) + g(i, j)) if j > 0
.

Hence, we can compute f(j) for all j using dynamic programming.

4 Assortment Optimization

There are n products, numbered 1 to n. Product i has revenue ri and consumer appeal
vi. For a set S ⊆ [n] (called assortment), the probability of a consumer buying product
i is

pi(S) :=
vi

v0 +
∑

j∈S vj
.

Let C ∈ Z≥1 be the assortment capacity. We need to find an assortment S ⊆ [n], where
|S| ≤ C, to maximize the expected revenue∑

i∈S

ripi(S) =

∑
i∈S rivi

v0 +
∑

i∈S vi
.

Non-linear IP:

min
x∈{0,1}n

∑n
i=1 rivixi

v0 +
∑n

i=1 vixi

where
n∑

i=1

xi ≤ C.
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4.1 Solution using LP

LP:

min
w0∈R,w∈Rn

n∑
i=1

riwi

where w0 +
n∑

i=1

wi = 1

and 0 ≤ wi

vi
≤ w0

v0
∀i ∈ [n]

and
n∑

i=1

wi

vi
≤ C

w0

v0

Lemma 9 (Extreme points). In any extreme-point solution to LP, wi/vi ∈ {0, w0/v0}.

Proof. Let w be an extreme point solution. If w0 = 0, then wi = 0 for all i ∈ [n], which
violates the first constraint. Hence, w0 > 0.

w is tight at at least n + 1 constraints. So, there can be at most a single value k for
which wk/vk ̸∈ {0, w0/v0}. Assume such a k exists. Then the last constraint is tight.
Hence, for S := {i : wi/vi = w0/v0}, we get

wk

vk
= C

w0

v0
−
∑
i ̸=k

wi

vi
= (C − |S|)w0

v0
.

Since C − |S| ∈ Z, we get that wk/vk ∈ {0, w0/v0}. This is a contradiction. Hence, no
such k exists.

Lemma 10 (LP vs IP). The optimal objective value of the IP and LP are the same.
Furthermore, we can solve the IP using an extreme-point solution to the LP.

Proof. Let w be an optimal extreme-point solution to the LP. Then xi := wiv0/viw0 is
feasible for the IP.

Let x be an optimal solution to the IP. Let α := v0 +
∑n

i=1 vixi. Let w0 := v0/α and
for i ∈ [n], let wi := vixi/α. Then w is feasible for the LP.
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