Integer Programming: Cutting Plane Method

Eklavya Sharma

Lemma 1 (Disjunction). Let $S_{1}, S_{2} \subseteq \mathbb{R}^{n}$. If $a^{T} x \leq \alpha$ for all $x \in S_{1}$, and $b^{T} x \leq \beta$ for all $x \in S_{2}$, then $\min (a, b)^{T} x \leq \max (\alpha, \beta)$ for all $x \in S_{1} \cup S_{2} .\left(\min (a, b)_{i}:=\min \left(a_{i}, b_{i}\right)\right.$.)

Definition 1 (Inequality dominance). Let $S \subseteq \mathbb{R}^{n}$. The inequality $a^{T} x \geq b$ dominates $c^{T} x \geq d$ in set S if $\left\{x \in S: a^{T} x \geq b\right\} \subseteq\left\{x \in S: c^{T} x \geq d\right\}$.

Definition 2 (Mixing). Suppose we are given a set S of inequalities $\left\{a_{i}^{T} x \geq b_{i}: i \in\right.$ $I\} \cup\left\{a_{i}^{T} x=b_{i}: i \in[m]-I\right\}$. Let $w \in \mathbb{R}^{m}$, where $w_{i} \geq 0$ for $i \in I$. Then the inequality $\left(w^{T} A\right) x \geq w^{T} b$ is called a mixing of the inequalities S (we are essentially doing a linear combination of the inequalities to get a new inequality).

Theorem 2 (Valid dominated by mixing). Let $A \in \mathbb{R}^{m \times n}, I \subseteq[m]$, and $J \subseteq[n]$. Let $P:=\left\{x \in \mathbb{R}^{n}:\left(x_{j} \geq 0, \forall j \in J\right),\left((A x)_{i} \geq b_{i}, \forall i \in I\right),\left((A x)_{i}=b_{i}, \forall i \in[m]-I\right)\right\}$ be a non-empty polyhedron. Let $c^{T} x \geq \gamma$ be an inequality satisfied by all points in P. Let $Q:=\left\{w \in \mathbb{R}^{m}:\left(y_{i} \geq 0, \forall i \in I\right),\left(\left(A^{T} w\right)_{j} \leq c_{j}, \forall j \in J\right),\left(\left(A^{T} w\right)_{j}=c_{j}, \forall j \in[n]-J\right)\right\}$. Then $Q \neq \emptyset$. Let $\widehat{w} \in \operatorname{argmax}_{w \in Q} b^{T} w$. Then $c^{T} x \geq \gamma$ is dominated by $\left(\widehat{w}^{T} A\right) x \geq \widehat{w}^{T} b$ in $S:=\left\{x \in \mathbb{R}^{n}: x_{j} \geq 0, \forall j \in J\right\}$.

Proof. Without loss of generality, assume $\left\{x \in P: c^{T} x=\gamma\right\} \neq \emptyset$, since we can increase γ. Then γ is the optimal objective value of the LP $\min _{x \in P} c^{T} x$. The dual of this LP is $\max _{w \in Q} b^{T} w$. By strong duality, $Q \neq \emptyset$ and $b^{T} \widehat{w}=\gamma$.

Let $\widehat{x} \in\left\{x \in S: \widehat{w}^{T} A x \geq \widehat{w}^{T} b\right\}$. We will show that $c^{T} \widehat{x} \geq \gamma$, which will imply that $\left(\widehat{w}^{T} A\right) x \geq \widehat{w}^{T} b$ dominates $c^{T} x \geq \gamma$. When $j \in J$, then $\widehat{x}_{j} \geq 0$ and $\left(A^{T} \widehat{w}\right)_{j} \leq c_{j}$, so $\widehat{x}_{j}\left(c-A^{T} \widehat{w}\right)_{j} \geq 0$. When $j \notin J$, then $\left(A^{T} \widehat{w}\right)_{j}=c_{j}$, so $\widehat{x}_{j}\left(c-A^{T} \widehat{w}\right)_{j}=0$. Hence, $\widehat{x}^{T}\left(c-A^{T} \widehat{w}\right) \geq 0$, so $c^{T} \widehat{x} \geq \widehat{w}^{T} A \widehat{x} \geq \widehat{w}^{T} b=\gamma$.

Lemma 3 (Rounding). Let $S \subseteq \mathbb{R}^{n}$ and $a \in \mathbb{Z}^{n}$. Then

$$
\begin{aligned}
& \left(\forall x \in S, a^{T} x \geq b\right) \Longrightarrow\left(\forall x \in S \cap \mathbb{Z}^{n}, a^{T} x \geq\lceil b\rceil\right) . \\
& \left(\forall x \in S, a^{T} x \leq b\right) \Longrightarrow\left(\forall x \in S \cap \mathbb{Z}^{n}, a^{T} x \leq\lfloor b\rfloor\right) .
\end{aligned}
$$

This transformation is called rounding.
Corollary 3.1. Let $S \subseteq \mathbb{R}_{\geq 0}^{n}$. Then

$$
\begin{aligned}
& \left(\forall x \in S, a^{T} x \geq b\right) \Longrightarrow\left(\forall x \in S \cap \mathbb{Z}^{n},\lceil a\rceil^{T} x \geq\lceil b\rceil\right) . \\
& \left(\forall x \in S, a^{T} x \leq b\right) \Longrightarrow\left(\forall x \in S \cap \mathbb{Z}^{n},\lfloor a\rfloor^{T} x \leq\lfloor b\rfloor\right) .
\end{aligned}
$$

1 Chvátal-Gomory Process

Definition 3 (Chvátal-Gomory process). Let $P \subseteq \mathbb{R}^{n}$ be a polyhedron described as a set S of inequalities. Assign a depth of 0 to all inequalities in S. Repeated application of the following operations (for any number of iterations) is called the Chvátal-Gomory (CG) process:

1. Mix a subset S^{\prime} of inequalities from S to get a new inequality $c^{T} x \geq d$ such that $c \in \mathbb{Z}^{n}$.
2. Add the inequality $c^{T} x \geq\lceil d\rceil$ to S. Assign the depth $1+\max _{i \in S^{\prime}} \operatorname{depth}(i)$ to this newly-added inequality.

The output of the process is S, the set of (original and newly-added) inequalities.
Lemma 4. Let Q be the output of some $C G$ process on polyhedron P. Let $P_{I}:=$ convexHull $\left(P \cap \mathbb{Z}^{n}\right)$. Then $P_{I} \subseteq Q \subseteq P$.

Definition 4 (CG rank and CG closure). Let $P \subseteq \mathbb{R}^{n}$ be a polyhedron, represented as a set S of inequalities. For any inequality $c^{T} d \geq d$, where $c \in \mathbb{Z}^{n}$ and $d \in \mathbb{Z}$, the $C G$ rank of the inequality is r if it can be obtained as a depth r inequality in some $C G$ process.

The $r^{\text {th }} C G$-closure of P is defined as the set of inequalities (and the associated polyhedron) of CG-rank at most r.

The CG-rank of a polyhedron is the smallest number t such that the $t^{\text {th }} C G$-closure of P is convexHull($P \cap \mathbb{Z}^{n}$) (and ∞ if no such integer t exists).

Lemma 5. Let $P \subseteq \mathbb{R}^{n}$ be a polyhedron, $P_{I}:=\operatorname{convexHull}\left(P \cap \mathbb{Z}^{n}\right)$, and $P^{(r)}$ be the $r^{\text {th }}$ $C G$ closure of P. Then $P_{I} \subseteq P^{(r)} \subseteq P$.

Lemma 6. Let $P:=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$, where $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^{m}$. Let $P^{\prime}:=$ $\left\{x: A x \leq b,\left(w^{T} A\right) x \leq\left\lfloor w^{T} b\right\rfloor \forall w \in[0,1]^{m}\right.$ such that $\left.w^{T} A \in \mathbb{Z}^{n}\right\}$. Then P^{\prime} is the first $C G$-closure of P.

Proof sketch. Any rank 1 inequality can be written as $\left(w^{T} A\right) x \leq\left\lfloor w^{T} b\right\rfloor$ for some $w \geq 0$, where $w^{T} A \in \mathbb{Z}^{n}$. Let $u:=w-\lfloor w\rfloor$. We can show that $\left(u^{T} A\right) x \leq\left\lfloor u^{T} b\right\rfloor$ is a rank-1 CG inequality, and $w^{T} A x \leq\left\lfloor w^{T} b\right\rfloor$ is implied by $\left(u^{T} A\right) x \leq\left\lfloor u^{T} b\right\rfloor$ and $A x \leq b$.

Theorem 7. If P is a rational polyhedron, then the first $C G$-closure of P is also a rational polyhedron.

Theorem 8 (Chvátal-Gomory). Given a rational polyhedron P described as a set S of inequalities, we can obtain convexHull $\left(P \cap \mathbb{Z}^{n}\right)$ using the $C G$ process for a finite number of iterations (by appropriately choosing which inequalities to mix in each step).

Corollary 8.1. The CG rank of a rational polyhedron is finite.

1.1 Extra Results

Theorem 9. There exist polyhedra whose $C G$ rank is super-polynomial in mn.
Theorem 10. Polyhedra in $[0,1]^{n}$ have $C G$ rank at most $n^{2}(1+\log n)$. There exist polyhedra in $[0,1]^{n}$ whose CG rank is at least $c n^{2}$ for some constant c.

2 Examples

Theorem 11 (Non-bipartite Matching). Let $G:=(V, E)$ be an undirected graph. Let

$$
P:=\left\{x \in \mathbb{R}^{|E|}:\left(\sum_{e \in \delta(v)} x_{e} \leq 1, \forall v \in V\right),\left(x_{e} \geq 0, \forall e \in E\right)\right\} .
$$

Then for any $S \subseteq V$ where $|S|$ is odd, the following inequality has $C G$ rank at most 1:

$$
\left.\sum_{e \in E(S)} x_{e} \leq \frac{|S|-1}{2} . \quad \text { (here } E(S):=\{(u, v) \in E: u \in S, v \in S\}\right)
$$

Proof.

$$
\sum_{v \in S} \frac{1}{2}\left(\sum_{e \in \delta(v)} x_{e} \leq 1\right)+\sum_{e \in \delta(S)} \frac{1}{2}\left(-x_{e} \leq 0\right)=\left(\sum_{e \in E(S)} x_{e} \leq \frac{|S|}{2}\right) .
$$

Then round this inequality. $\lfloor|S| / 2\rfloor=(|S|-1) / 2$.
Theorem 12 (Independent set). Let $G:=(V, E)$ be an undirected graph. Let

$$
P:=\left\{x \in \mathbb{R}^{|V|}:\left(x_{u}+x_{v} \leq 1, \forall(u, v) \in E\right),\left(0 \leq x_{v} \leq 1, \forall v \in V\right)\right\}
$$

Then for any odd-cycle C, the following is a $C G$ rank 1 inequality:

$$
\begin{equation*}
\sum_{v \in C} x_{v} \leq \frac{|C|-1}{2} \tag{1}
\end{equation*}
$$

For any clique $S \subseteq V$, the following is an inequality of $C G$ rank at most $\left\lceil\log _{2}(|S|-1)\right\rceil$:

$$
\begin{equation*}
\sum_{v \in S} x_{v} \leq 1 \tag{2}
\end{equation*}
$$

Proof. Equation (1) has rank at most 1 because

$$
\sum_{(u, v) \in C} \frac{1}{2}\left(x_{u}+x_{v} \leq 1\right)=\left(\sum_{v \in C} x_{v} \leq \frac{|C|}{2}\right) .
$$

It has rank exactly 1 since it contains $|C| \geq 3$ terms, but the original inequalities of P contain at most 2 terms.

WLoG, assume $S:=\{1,2, \ldots, n\}$. Let $m:=\left\lceil\log _{2}(n-1)\right\rceil$. For $0 \leq i \leq m$, let $r_{i}:=\min \left(n, 2^{i}+1\right)$. Then $r_{m-1}<n=r_{m}$. Let $B(k)$ be the proposition that for any $R \subseteq S$ such that $|R| \leq r_{k}, \sum_{i \in R} x_{i} \leq 1$ is a CG inequality of rank at most k. Then $B(m)$ would imply Eq. (2).

We will show $B(k)$ by induction on k. If $|R| \leq 2=r_{0}$, then $\sum_{i \in R} x_{i} \leq 1$ is a constraint of P (since S is a clique), and so has rank 0 . Now let $r_{k-1}<|R| \leq r_{k}$ for some $k \geq 1$.

By the inductive hypothesis, for any $T \subseteq S$ such that $|T|=r_{k-1}, \sum_{i \in T} x_{i} \leq 1$ is an inequality of CG rank at most $k-1$. Then

$$
\begin{aligned}
& \sum_{T \subseteq R:|T|=r_{k-1}}\left(\sum_{i \in T} x_{i} \leq 1\right)=\left(\binom{|R|-1}{r_{k-1}-1} \sum_{i \in R} x_{i} \leq\binom{|R|}{r_{k-1}}\right) . \\
& \binom{|R|}{r_{k-1}}=\frac{|R|}{r_{k-1}}\binom{|R|-1}{r_{k-1}-1}, \quad \frac{|R|}{r_{k-1}} \leq \frac{r_{k}}{r_{k-1}}=2-\frac{1}{r_{k-1}} .
\end{aligned}
$$

Hence, $\sum_{i \in R} x_{i} \leq 1$ is an inequality of CG rank at most k. By induction, $B(k) \forall k$.
Theorem 13 (Knapsack, [1]). Let $P:=\left\{x \in[0,1]^{n}: a^{T} x \leq b\right\}$, where $b \in \mathbb{Z}_{\geq 1}$, and $a \in([1, b] \cap \mathbb{Z})^{n}$. For any $S \subseteq[n]$, let $a(S):=\sum_{i \in S} a_{i}$. Let $C \subseteq[n]$ be a minimal cover, i.e., $a(C)>b$ and $a\left(C^{\prime}\right) \leq b$ for all $C^{\prime} \subsetneq C$. Then $\sum_{i \in C} x_{i} \leq|C|-1$ is an inequality of $C G$ rank at most 1.

Proof.

$$
\begin{aligned}
& \sum_{i \in C}\left(1-\frac{a_{i}}{b+1}\right)\left(x_{i} \leq 1\right)+\sum_{i \in[n]-C}\left(\frac{a_{i}}{b+1}\right)\left(-x_{i} \leq 0\right)+\frac{\left(a^{T} x \leq b\right)}{b+1} \\
& =\left(\sum_{i \in C} x_{i} \leq|C|-\frac{a(C)-b}{b+1}\right) .
\end{aligned}
$$

By minimality of C, we get $b<a(C) \leq 2 b$, so $(a(C)-b) /(b+1) \in(0,1)$.

References

[1] B.L. Dietrich and L.F. Escudero. Obtaining clique, cover and coefficient reduction inequalities as Chvatal-Gomory inequalities and Gomory fractional cuts. European Journal of Operational Research, 73(3):539-546, 1994. doi:10.1016/0377-2217(94) 90250-X.

