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Lemma 1 (Disjunction). Let S1, S2 ⊆ Rn. If aTx ≤ α for all x ∈ S1, and bTx ≤ β for
all x ∈ S2, then min(a, b)Tx ≤ max(α, β) for all x ∈ S1 ∪ S2. (min(a, b)i := min(ai, bi).)

Definition 1 (Inequality dominance). Let S ⊆ Rn. The inequality aTx ≥ b dominates
cTx ≥ d in set S if {x ∈ S : aTx ≥ b} ⊆ {x ∈ S : cTx ≥ d}.

Definition 2 (Mixing). Suppose we are given a set S of inequalities {aTi x ≥ bi : i ∈
I} ∪ {aTi x = bi : i ∈ [m]− I}. Let w ∈ Rm, where wi ≥ 0 for i ∈ I. Then the inequality
(wTA)x ≥ wT b is called a mixing of the inequalities S (we are essentially doing a linear
combination of the inequalities to get a new inequality).

Theorem 2 (Valid dominated by mixing). Let A ∈ Rm×n, I ⊆ [m], and J ⊆ [n]. Let
P := {x ∈ Rn : (xj ≥ 0,∀j ∈ J), ((Ax)i ≥ bi, ∀i ∈ I), ((Ax)i = bi,∀i ∈ [m] − I)} be a
non-empty polyhedron. Let cTx ≥ γ be an inequality satisfied by all points in P . Let
Q := {w ∈ Rm : (yi ≥ 0,∀i ∈ I), ((ATw)j ≤ cj, ∀j ∈ J), ((ATw)j = cj,∀j ∈ [n] − J)}.
Then Q ̸= ∅. Let ŵ ∈ argmaxw∈Q bTw. Then cTx ≥ γ is dominated by (ŵTA)x ≥ ŵT b in
S := {x ∈ Rn : xj ≥ 0,∀j ∈ J}.

Proof. Without loss of generality, assume {x ∈ P : cTx = γ} ≠ ∅, since we can increase
γ. Then γ is the optimal objective value of the LP minx∈P cTx. The dual of this LP is
maxw∈Q bTw. By strong duality, Q ̸= ∅ and bT ŵ = γ.

Let x̂ ∈ {x ∈ S : ŵTAx ≥ ŵT b}. We will show that cT x̂ ≥ γ, which will imply
that (ŵTA)x ≥ ŵT b dominates cTx ≥ γ. When j ∈ J , then x̂j ≥ 0 and (AT ŵ)j ≤ cj,
so x̂j(c − AT ŵ)j ≥ 0. When j ̸∈ J , then (AT ŵ)j = cj, so x̂j(c − AT ŵ)j = 0. Hence,
x̂T (c− AT ŵ) ≥ 0, so cT x̂ ≥ ŵTAx̂ ≥ ŵT b = γ.

Lemma 3 (Rounding). Let S ⊆ Rn and a ∈ Zn. Then

(∀x ∈ S, aTx ≥ b) =⇒ (∀x ∈ S ∩ Zn, aTx ≥ ⌈b⌉).

(∀x ∈ S, aTx ≤ b) =⇒ (∀x ∈ S ∩ Zn, aTx ≤ ⌊b⌋).

This transformation is called rounding.

Corollary 3.1. Let S ⊆ Rn
≥0. Then

(∀x ∈ S, aTx ≥ b) =⇒ (∀x ∈ S ∩ Zn, ⌈a⌉T x ≥ ⌈b⌉).

(∀x ∈ S, aTx ≤ b) =⇒ (∀x ∈ S ∩ Zn, ⌊a⌋T x ≤ ⌊b⌋).

1



1 Chvátal-Gomory Process

Definition 3 (Chvátal-Gomory process). Let P ⊆ Rn be a polyhedron described as a set
S of inequalities. Assign a depth of 0 to all inequalities in S. Repeated application of the
following operations (for any number of iterations) is called the Chvátal-Gomory (CG)
process:

1. Mix a subset S ′ of inequalities from S to get a new inequality cTx ≥ d such that
c ∈ Zn.

2. Add the inequality cTx ≥ ⌈d⌉ to S. Assign the depth 1 + maxi∈S′ depth(i) to this
newly-added inequality.

The output of the process is S, the set of (original and newly-added) inequalities.

Lemma 4. Let Q be the output of some CG process on polyhedron P . Let PI :=
convexHull(P ∩ Zn). Then PI ⊆ Q ⊆ P .

Definition 4 (CG rank and CG closure). Let P ⊆ Rn be a polyhedron, represented as a
set S of inequalities. For any inequality cTd ≥ d, where c ∈ Zn and d ∈ Z, the CG rank
of the inequality is r if it can be obtained as a depth r inequality in some CG process.

The rth CG-closure of P is defined as the set of inequalities (and the associated poly-
hedron) of CG-rank at most r.

The CG-rank of a polyhedron is the smallest number t such that the tth CG-closure of
P is convexHull(P ∩ Zn) (and ∞ if no such integer t exists).

Lemma 5. Let P ⊆ Rn be a polyhedron, PI := convexHull(P ∩ Zn), and P (r) be the rth

CG closure of P . Then PI ⊆ P (r) ⊆ P .

Lemma 6. Let P := {x ∈ Rn : Ax ≤ b}, where A ∈ Zm×n and b ∈ Zm. Let P ′ :=
{x : Ax ≤ b, (wTA)x ≤

⌊
wT b

⌋
∀w ∈ [0, 1]m such that wTA ∈ Zn}. Then P ′ is the first

CG-closure of P .

Proof sketch. Any rank 1 inequality can be written as (wTA)x ≤
⌊
wT b

⌋
for some w ≥ 0,

where wTA ∈ Zn. Let u := w − ⌊w⌋. We can show that (uTA)x ≤
⌊
uT b
⌋
is a rank-1 CG

inequality, and wTAx ≤
⌊
wT b

⌋
is implied by (uTA)x ≤

⌊
uT b
⌋
and Ax ≤ b.

Theorem 7. If P is a rational polyhedron, then the first CG-closure of P is also a
rational polyhedron.

Theorem 8 (Chvátal-Gomory). Given a rational polyhedron P described as a set S of
inequalities, we can obtain convexHull(P ∩ Zn) using the CG process for a finite number
of iterations (by appropriately choosing which inequalities to mix in each step).

Corollary 8.1. The CG rank of a rational polyhedron is finite.

1.1 Extra Results

Theorem 9. There exist polyhedra whose CG rank is super-polynomial in mn.

Theorem 10. Polyhedra in [0, 1]n have CG rank at most n2(1 + log n). There exist
polyhedra in [0, 1]n whose CG rank is at least cn2 for some constant c.
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2 Examples

Theorem 11 (Non-bipartite Matching). Let G := (V,E) be an undirected graph. Let

P :=

x ∈ R|E| :

∑
e∈δ(v)

xe ≤ 1,∀v ∈ V

 , (xe ≥ 0,∀e ∈ E)

 .

Then for any S ⊆ V where |S| is odd, the following inequality has CG rank at most 1:∑
e∈E(S)

xe ≤
|S| − 1

2
. (here E(S) := {(u, v) ∈ E : u ∈ S, v ∈ S})

Proof.

∑
v∈S

1

2

∑
e∈δ(v)

xe ≤ 1

+
∑

e∈δ(S)

1

2
(−xe ≤ 0) =

 ∑
e∈E(S)

xe ≤
|S|
2

 .

Then round this inequality. ⌊|S|/2⌋ = (|S| − 1)/2.

Theorem 12 (Independent set). Let G := (V,E) be an undirected graph. Let

P :=
{
x ∈ R|V | : (xu + xv ≤ 1,∀(u, v) ∈ E), (0 ≤ xv ≤ 1,∀v ∈ V )

}
.

Then for any odd-cycle C, the following is a CG rank 1 inequality:∑
v∈C

xv ≤
|C| − 1

2
. (1)

For any clique S ⊆ V , the following is an inequality of CG rank at most ⌈log2(|S| − 1)⌉:

∑
v∈S

xv ≤ 1. (2)

Proof. Equation (1) has rank at most 1 because

∑
(u,v)∈C

1

2
(xu + xv ≤ 1) =

(∑
v∈C

xv ≤
|C|
2

)
.

It has rank exactly 1 since it contains |C| ≥ 3 terms, but the original inequalities of P
contain at most 2 terms.

WLoG, assume S := {1, 2, . . . , n}. Let m := ⌈log2(n− 1)⌉. For 0 ≤ i ≤ m, let
ri := min(n, 2i + 1). Then rm−1 < n = rm. Let B(k) be the proposition that for any
R ⊆ S such that |R| ≤ rk,

∑
i∈R xi ≤ 1 is a CG inequality of rank at most k. Then B(m)

would imply Eq. (2).

We will show B(k) by induction on k. If |R| ≤ 2 = r0, then
∑

i∈R xi ≤ 1 is a constraint
of P (since S is a clique), and so has rank 0. Now let rk−1 < |R| ≤ rk for some k ≥ 1.
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By the inductive hypothesis, for any T ⊆ S such that |T | = rk−1,
∑

i∈T xi ≤ 1 is an
inequality of CG rank at most k − 1. Then

∑
T⊆R:|T |=rk−1

(∑
i∈T

xi ≤ 1

)
=

((
|R| − 1

rk−1 − 1

)∑
i∈R

xi ≤
(
|R|
rk−1

))
.

(
|R|
rk−1

)
=

|R|
rk−1

(
|R| − 1

rk−1 − 1

)
,

|R|
rk−1

≤ rk
rk−1

= 2− 1

rk−1

.

Hence,
∑

i∈R xi ≤ 1 is an inequality of CG rank at most k. By induction, B(k) ∀k.

Theorem 13 (Knapsack, [1]). Let P := {x ∈ [0, 1]n : aTx ≤ b}, where b ∈ Z≥1, and
a ∈ ([1, b] ∩ Z)n. For any S ⊆ [n], let a(S) :=

∑
i∈S ai. Let C ⊆ [n] be a minimal cover,

i.e., a(C) > b and a(C ′) ≤ b for all C ′ ⊊ C. Then
∑

i∈C xi ≤ |C| − 1 is an inequality of
CG rank at most 1.

Proof.∑
i∈C

(
1− ai

b+ 1

)
(xi ≤ 1) +

∑
i∈[n]−C

(
ai

b+ 1

)
(−xi ≤ 0) +

(aTx ≤ b)

b+ 1

=

(∑
i∈C

xi ≤ |C| − a(C)− b

b+ 1

)
.

By minimality of C, we get b < a(C) ≤ 2b, so (a(C)− b)/(b+ 1) ∈ (0, 1).
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