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Based on lecture notes by Prof. Karthik (Lecture 10) and Prof. Eteasmi.

1 Definition and Motivation

Definition 1 (Integral matrix). A ∈ Rm×n is integral iff each entry in A is an integer.

Definition 2 (Total Unimodularity). A matrix A ∈ Rm×n is totally unimodular (TU)
iff for every square submatrix B of A, we have det(B) ∈ {−1, 0, 1}.

Lemma 1 (Integral inverse). Let A be TU. Then for every square submatrix B of A,
B−1 is integral.

Proof sketch. If A is TU, then B is also TU. Let B ∈ Rn×n. Then

(B−1)[i, j] =
(−1)i+j det(Ci,j)

det(B)
where Ci,j = B[[n]− {j}, [n]− {i}].

det(B), det(Ci,j) ∈ {−1, 0, 1} because B is TU.

Theorem 2 (TU polyhedron). Let P := {x ∈ Rn : (aTi x = bi,∀i ∈ E) ∧ (aTi x ≥ bi,∀i ∈
I)} be a non-empty polyhedron, where bi ∈ Z for all i ∈ I ∪ E. Let A be a matrix whose
rows are {aTi : i ∈ I ∪ E}. If A is TU, then P is integral.

Proof sketch. We need to show that every minimal face of P contains an integral vector.
Every minimal face F is given by {x : Bx = c}, which is a subsystem of Ax = b. Find a
basis U of the columns of B. Then U would be a full-rank square submatrix of B. Use
U−1c to construct an integral point in F .

Theorem 3 (Hoffman-Kruskal). Let A ∈ Zm×n. A is TU iff {x : Ax ≤ b} is integral for
all b ∈ Zm.

2 TUity-Preserving Operations on Matrices

Lemma 4. Let A ∈ Rm×n.

1. A is TU iff −A is TU.
2. A is TU iff AT is TU.
3. If B is obtained by rearranging the rows or columns of A, then A is TU iff B is

TU.

1

http://karthik.ise.illinois.edu/courses/ie511/lectures-sp-21/lecture-10.pdf


4. If B is obtained by multiplying a row or column of A by a scalar α ∈ {−1, 0, 1},
then A is TU =⇒ B is TU.

5. A is TU iff [A, I] is TU.
6. If A′ is obtained by pivoting A at (i, j), then A′ is TU if A is TU.
7. If A is invertible, then A is TU iff A−1 is TU.

1, 2, 3, 4 are trivial to prove. 7 is a corollary of 5 and 6, since we can obtain [I, A−1]
by repeatedly pivoting [A, I].

Proof sketch of 5. For any square submatrix containing a few rows and columns from I,
repeatedly pivot on elements of I till we get a submatrix of A.

Proof of 6. Let J ⊆ [m] and K ⊆ [n]. Let B := A[J,K] and B′ := A′[J,K]. Then
det(B) ∈ {−1, 0, 1} because A is TU. We will show that det(B′) ∈ {−1, 0, 1}.

If i ∈ J , then B′ can be obtained by performing row operations on B. Hence,
det(B′) = det(B) ∈ {−1, 0, 1}. If i ̸∈ J and j ∈ K, then B′ has a zero column, so
det(B′) = 0.

Suppose i ̸∈ J and j ̸∈ K. Let J ′ := {i} ∪ J and K ′ := {j} ∪K. Let C := A[J ′, K ′]
and C ′ := A′[J ′, K ′]. Then C ′ can be obtained by performing row operations on C.
Hence, det(C ′) = det(C) ∈ {−1, 0, 1}. Also,

C ′ =

[
1 A′[i,K]
0 B′

]
.

Hence, det(C ′) = det(B′). Hence, det(B′) ∈ {−1, 0, 1}.

3 Conditions for TUity

Lemma 5 (Sufficient condition). Let A ∈ {−1, 0, 1}m×n. Then A is TU if each column
of A contains at most two non-0 elements and ∃M ⊆ [m] (subset of rows) such that every
column j with two non-0 entries satisfies∑

i∈M

A[i, j] =
∑
i ̸∈M

A[i, j]. (1)

Proof sketch. Let B be the smallest submatrix of A such that det(B) ̸∈ {−1, 0, 1}. Every
column of B has exactly two non-0 elements, else we can construct a smaller counterexam-
ple. Equation (1) implies that rows of B are linearly dependent, and so det(B) = 0.

Lemma 6 (Characterization). Let A ∈ {−1, 0, 1}m×n. A is TU iff ∀J ⊆ [m], ∃K ⊆ J ,∣∣∣∣∣∑
i∈K

A[i, j]−
∑

i∈J−K

A[i, j]

∣∣∣∣∣ ≤ 1 ∀j ∈ [n].

4 Examples

Lemma 7 (Interval matrix). A matrix A ∈ {0, 1}m×n is called an interval matrix if in
each column, all ones are in consecutive positions. An interval matrix is TU.
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Proof sketch. Use Lemma 6 with K as alternate rows of J .

Lemma 8 (Directed incidence matrix). Let G := (V,E) be a directed graph. The inci-
dence matrix of G is defined as the matrix A ∈ {−1, 0, 1}|V |×|E|, where

A[w, (u, v)] :=


0 if w ̸∈ {u, v}
−1 if w = u

1 if w = v

.

Then A is TU.

Proof sketch. Use Lemma 5 with M = ∅.

Lemma 9. Let A ∈ {0, 1}n×n, where A[i, j] = 1 iff j ∈ {i + 1, i + 1 − n}. Then det(A)
is 0 if n is even and 2 if n is odd.

Proof sketch. Apply two row operations to the determinant to reduce to an (n−2)×(n−2)
matrix of the same structure.

Lemma 10 (Undirected incidence matrix). Let G := (V,E) be an undirected graph. The
incidence matrix of G is defined as the matrix A ∈ {0, 1}|V |×|E|, where A[v, e] is 1 iff v is
an endpoint of e. Then A is TU iff G is bipartite.

Proof sketch. If G is bipartite with vertex partitions L and R, use Lemma 5 with M = L.
If G is not bipartite, it contains a cycle C of odd length. Let V ′ and E ′ be the vertices
and edges in C. Then det(A[V ′, E ′]) = 2, by Lemma 9.
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