Integer Programming: Total Unimodularity

Eklavya Sharma

Based on lecture notes by Prof. Karthik (Lecture 10) and Prof. Eteasmi.

1 Definition and Motivation

Definition 1 (Integral matrix). $A \in \mathbb{R}^{m \times n}$ is integral iff each entry in A is an integer.
Definition 2 (Total Unimodularity). A matrix $A \in \mathbb{R}^{m \times n}$ is totally unimodular (TU) iff for every square submatrix B of A, we have $\operatorname{det}(B) \in\{-1,0,1\}$.

Lemma 1 (Integral inverse). Let A be $T U$. Then for every square submatrix B of A, B^{-1} is integral.

Proof sketch. If A is TU, then B is also TU. Let $B \in \mathbb{R}^{n \times n}$. Then

$$
\left(B^{-1}\right)[i, j]=\frac{(-1)^{i+j} \operatorname{det}\left(C_{i, j}\right)}{\operatorname{det}(B)} \quad \text { where } \quad C_{i, j}=B[[n]-\{j\},[n]-\{i\}] .
$$

$\operatorname{det}(B), \operatorname{det}\left(C_{i, j}\right) \in\{-1,0,1\}$ because B is TU.
Theorem 2 (TU polyhedron). Let $P:=\left\{x \in \mathbb{R}^{n}:\left(a_{i}^{T} x=b_{i}, \forall i \in E\right) \wedge\left(a_{i}^{T} x \geq b_{i}, \forall i \in\right.\right.$ $I)\}$ be a non-empty polyhedron, where $b_{i} \in \mathbb{Z}$ for all $i \in I \cup E$. Let A be a matrix whose rows are $\left\{a_{i}^{T}: i \in I \cup E\right\}$. If A is $T U$, then P is integral.

Proof sketch. We need to show that every minimal face of P contains an integral vector. Every minimal face F is given by $\{x: B x=c\}$, which is a subsystem of $A x=b$. Find a basis U of the columns of B. Then U would be a full-rank square submatrix of B. Use $U^{-1} c$ to construct an integral point in F.

Theorem 3 (Hoffman-Kruskal). Let $A \in \mathbb{Z}^{m \times n}$. A is TU iff $\{x: A x \leq b\}$ is integral for all $b \in \mathbb{Z}^{m}$.

2 TUity-Preserving Operations on Matrices

Lemma 4. Let $A \in \mathbb{R}^{m \times n}$.

1. A is $T U$ iff $-A$ is $T U$.
2. A is $T U$ iff A^{T} is $T U$.
3. If B is obtained by rearranging the rows or columns of A, then A is TU iff B is $T U$.
4. If B is obtained by multiplying a row or column of A by a scalar $\alpha \in\{-1,0,1\}$, then A is $T U \Longrightarrow B$ is $T U$.
5. A is $T U$ iff $[A, I]$ is $T U$.
6. If A^{\prime} is obtained by pivoting A at (i, j), then A^{\prime} is $T U$ if A is $T U$.
7. If A is invertible, then A is TU iff A^{-1} is TU.
$1,2,3,4$ are trivial to prove. 7 is a corollary of 5 and 6 , since we can obtain $\left[I, A^{-1}\right]$ by repeatedly pivoting $[A, I]$.

Proof sketch of 5. For any square submatrix containing a few rows and columns from I, repeatedly pivot on elements of I till we get a submatrix of A.

Proof of 6. Let $J \subseteq[m]$ and $K \subseteq[n]$. Let $B:=A[J, K]$ and $B^{\prime}:=A^{\prime}[J, K]$. Then $\operatorname{det}(B) \in\{-1,0,1\}$ because A is TU . We will show that $\operatorname{det}\left(B^{\prime}\right) \in\{-1,0,1\}$.

If $i \in J$, then B^{\prime} can be obtained by performing row operations on B. Hence, $\operatorname{det}\left(B^{\prime}\right)=\operatorname{det}(B) \in\{-1,0,1\}$. If $i \notin J$ and $j \in K$, then B^{\prime} has a zero column, so $\operatorname{det}\left(B^{\prime}\right)=0$.

Suppose $i \notin J$ and $j \notin K$. Let $J^{\prime}:=\{i\} \cup J$ and $K^{\prime}:=\{j\} \cup K$. Let $C:=A\left[J^{\prime}, K^{\prime}\right]$ and $C^{\prime}:=A^{\prime}\left[J^{\prime}, K^{\prime}\right]$. Then C^{\prime} can be obtained by performing row operations on C. Hence, $\operatorname{det}\left(C^{\prime}\right)=\operatorname{det}(C) \in\{-1,0,1\}$. Also,

$$
C^{\prime}=\left[\begin{array}{cc}
1 & A^{\prime}[i, K] \\
0 & B^{\prime}
\end{array}\right]
$$

Hence, $\operatorname{det}\left(C^{\prime}\right)=\operatorname{det}\left(B^{\prime}\right)$. Hence, $\operatorname{det}\left(B^{\prime}\right) \in\{-1,0,1\}$.

3 Conditions for TUity

Lemma 5 (Sufficient condition). Let $A \in\{-1,0,1\}^{m \times n}$. Then A is TU if each column of A contains at most two non-0 elements and $\exists M \subseteq[m]$ (subset of rows) such that every column j with two non-0 entries satisfies

$$
\begin{equation*}
\sum_{i \in M} A[i, j]=\sum_{i \notin M} A[i, j] . \tag{1}
\end{equation*}
$$

Proof sketch. Let B be the smallest submatrix of A such that $\operatorname{det}(B) \notin\{-1,0,1\}$. Every column of B has exactly two non-0 elements, else we can construct a smaller counterexample. Equation (1) implies that rows of B are linearly dependent, and so $\operatorname{det}(B)=0$.

Lemma 6 (Characterization). Let $A \in\{-1,0,1\}^{m \times n} . A$ is $T U$ iff $\forall J \subseteq[m], \exists K \subseteq J$,

$$
\left|\sum_{i \in K} A[i, j]-\sum_{i \in J-K} A[i, j]\right| \leq 1 \quad \forall j \in[n] .
$$

4 Examples

Lemma 7 (Interval matrix). A matrix $A \in\{0,1\}^{m \times n}$ is called an interval matrix if in each column, all ones are in consecutive positions. An interval matrix is TU.

Proof sketch. Use Lemma 6 with K as alternate rows of J.
Lemma 8 (Directed incidence matrix). Let $G:=(V, E)$ be a directed graph. The incidence matrix of G is defined as the matrix $A \in\{-1,0,1\}^{|V| \times|E|}$, where

$$
A[w,(u, v)]:=\left\{\begin{array}{ll}
0 & \text { if } w \notin\{u, v\} \\
-1 & \text { if } w=u \\
1 & \text { if } w=v
\end{array} .\right.
$$

Then A is $T U$.
Proof sketch. Use Lemma 5 with $M=\emptyset$.
Lemma 9. Let $A \in\{0,1\}^{n \times n}$, where $A[i, j]=1$ iff $j \in\{i+1, i+1-n\}$. Then $\operatorname{det}(A)$ is 0 if n is even and 2 if n is odd.

Proof sketch. Apply two row operations to the determinant to reduce to an $(n-2) \times(n-2)$ matrix of the same structure.

Lemma 10 (Undirected incidence matrix). Let $G:=(V, E)$ be an undirected graph. The incidence matrix of G is defined as the matrix $A \in\{0,1\}^{|V| \times|E|}$, where $A[v, e]$ is 1 iff v is an endpoint of e. Then A is TU iff G is bipartite.

Proof sketch. If G is bipartite with vertex partitions L and R, use Lemma 5 with $M=L$. If G is not bipartite, it contains a cycle C of odd length. Let V^{\prime} and E^{\prime} be the vertices and edges in C. Then $\operatorname{det}\left(A\left[V^{\prime}, E^{\prime}\right]\right)=2$, by Lemma 9 .

