Integer Programming: Total Unimodularity

Eklavya Sharma

Based on lecture notes by Prof. Karthik (Lecture 10) and Prof. Eteasmi.

1 Definition and Motivation

Definition 1 (Integral matrix). $A \in \mathbb{R}^{m \times n}$ is integral iff each entry in A is an integer.

Definition 2 (Total Unimodularity). A matrix $A \in \mathbb{R}^{m \times n}$ is totally unimodular (TU) iff for every square submatrix B of A, we have det $(B) \in \{-1, 0, 1\}$.

Lemma 1 (Integral inverse). Let A be TU. Then for every square submatrix B of A, B^{-1} is integral.

Proof sketch. If A is TU, then B is also TU. Let $B \in \mathbb{R}^{n \times n}$. Then

$$(B^{-1})[i,j] = \frac{(-1)^{i+j} \det(C_{i,j})}{\det(B)} \quad \text{where} \quad C_{i,j} = B[[n] - \{j\}, [n] - \{i\}].$$

 $det(B), det(C_{i,j}) \in \{-1, 0, 1\}$ because B is TU.

Theorem 2 (TU polyhedron). Let $P := \{x \in \mathbb{R}^n : (a_i^T x = b_i, \forall i \in E) \land (a_i^T x \ge b_i, \forall i \in I)\}$ be a non-empty polyhedron, where $b_i \in \mathbb{Z}$ for all $i \in I \cup E$. Let A be a matrix whose rows are $\{a_i^T : i \in I \cup E\}$. If A is TU, then P is integral.

Proof sketch. We need to show that every minimal face of P contains an integral vector. Every minimal face F is given by $\{x : Bx = c\}$, which is a subsystem of Ax = b. Find a basis U of the columns of B. Then U would be a full-rank square submatrix of B. Use $U^{-1}c$ to construct an integral point in F.

Theorem 3 (Hoffman-Kruskal). Let $A \in \mathbb{Z}^{m \times n}$. A is TU iff $\{x : Ax \leq b\}$ is integral for all $b \in \mathbb{Z}^m$.

2 TUity-Preserving Operations on Matrices

Lemma 4. Let $A \in \mathbb{R}^{m \times n}$.

- 1. A is TU iff -A is TU.
- 2. A is TU iff A^T is TU.
- 3. If B is obtained by rearranging the rows or columns of A, then A is TU iff B is TU.

- 4. If B is obtained by multiplying a row or column of A by a scalar $\alpha \in \{-1, 0, 1\}$, then A is $TU \implies B$ is TU.
- 5. A is TU iff [A, I] is TU.
- 6. If A' is obtained by pivoting A at (i, j), then A' is TU if A is TU.
- 7. If A is invertible, then A is TU iff A^{-1} is TU.

1, 2, 3, 4 are trivial to prove. 7 is a corollary of 5 and 6, since we can obtain $[I, A^{-1}]$ by repeatedly pivoting [A, I].

Proof sketch of 5. For any square submatrix containing a few rows and columns from I, repeatedly pivot on elements of I till we get a submatrix of A.

Proof of 6. Let $J \subseteq [m]$ and $K \subseteq [n]$. Let B := A[J,K] and B' := A'[J,K]. Then $det(B) \in \{-1,0,1\}$ because A is TU. We will show that $det(B') \in \{-1,0,1\}$.

If $i \in J$, then B' can be obtained by performing row operations on B. Hence, det $(B') = det(B) \in \{-1, 0, 1\}$. If $i \notin J$ and $j \in K$, then B' has a zero column, so det(B') = 0.

Suppose $i \notin J$ and $j \notin K$. Let $J' := \{i\} \cup J$ and $K' := \{j\} \cup K$. Let C := A[J', K']and C' := A'[J', K']. Then C' can be obtained by performing row operations on C. Hence, $\det(C') = \det(C) \in \{-1, 0, 1\}$. Also,

$$C' = \begin{bmatrix} 1 & A'[i, K] \\ \mathbf{0} & B' \end{bmatrix}$$

Hence, det(C') = det(B'). Hence, $det(B') \in \{-1, 0, 1\}$.

3 Conditions for TUity

Lemma 5 (Sufficient condition). Let $A \in \{-1, 0, 1\}^{m \times n}$. Then A is TU if each column of A contains at most two non-0 elements and $\exists M \subseteq [m]$ (subset of rows) such that every column j with two non-0 entries satisfies

$$\sum_{i \in M} A[i,j] = \sum_{i \notin M} A[i,j].$$
⁽¹⁾

Proof sketch. Let B be the smallest submatrix of A such that $det(B) \notin \{-1, 0, 1\}$. Every column of B has exactly two non-0 elements, else we can construct a smaller counterexample. Equation (1) implies that rows of B are linearly dependent, and so det(B) = 0. \Box

Lemma 6 (Characterization). Let $A \in \{-1, 0, 1\}^{m \times n}$. A is TU iff $\forall J \subseteq [m], \exists K \subseteq J$,

$$\left|\sum_{i\in K} A[i,j] - \sum_{i\in J-K} A[i,j]\right| \le 1 \qquad \forall j\in [n].$$

4 Examples

Lemma 7 (Interval matrix). A matrix $A \in \{0, 1\}^{m \times n}$ is called an interval matrix if in each column, all ones are in consecutive positions. An interval matrix is TU.

Proof sketch. Use Lemma 6 with K as alternate rows of J.

Lemma 8 (Directed incidence matrix). Let G := (V, E) be a directed graph. The incidence matrix of G is defined as the matrix $A \in \{-1, 0, 1\}^{|V| \times |E|}$, where

$$A[w, (u, v)] := \begin{cases} 0 & \text{if } w \notin \{u, v\} \\ -1 & \text{if } w = u \\ 1 & \text{if } w = v \end{cases}.$$

Then A is TU.

Proof sketch. Use Lemma 5 with $M = \emptyset$.

Lemma 9. Let $A \in \{0,1\}^{n \times n}$, where A[i,j] = 1 iff $j \in \{i+1, i+1-n\}$. Then det(A) is 0 if n is even and 2 if n is odd.

Proof sketch. Apply two row operations to the determinant to reduce to an $(n-2) \times (n-2)$ matrix of the same structure.

Lemma 10 (Undirected incidence matrix). Let G := (V, E) be an undirected graph. The incidence matrix of G is defined as the matrix $A \in \{0, 1\}^{|V| \times |E|}$, where A[v, e] is 1 iff v is an endpoint of e. Then A is TU iff G is bipartite.

Proof sketch. If G is bipartite with vertex partitions L and R, use Lemma 5 with M = L. If G is not bipartite, it contains a cycle C of odd length. Let V' and E' be the vertices and edges in C. Then $\det(A[V', E']) = 2$, by Lemma 9.