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1 Duality

Consider the optimization problem P:

min f(z) where Vi € I,¢;(z) > 0AVj € J hj(x) =0

zeRd
The corresponding Lagrangian is

Lia, A pr) = fla) = Ne(x) — u"h(x)
Define g as

g(A\, 1) = min L(w, A, p)

rER4

Let D be this optimization problem:

n;axg()\, p) where g(A\, ) # —00 AX >0
H

Then D is said to be the dual of P.

Theorem 1 (Weak duality theorem). Let x¢ be a feasible solution to P and (Ao, to) be
feasible solution to D. Then

9(Aos o) < L(zo, Ao, o) < f(wo)
Proof.

9()\07 Mo)

= min L(z, A,
2eRd ( 05 Ho)

S L(l‘o, AO? MO)
= f(z0) = Mg c(wo) — 1 (o)
< f(xo) (Mo > 0Ac(zg) > 0A h(zg) = 0 by feasibility)

]

Definition 1 (Duality gap). Let z* be the optimal solution to P and (\*,u*) be the
optimal solution to D. Then the duality gap is defined to be the quantity

f@®) =g\, )



Corollary 1.1. Let xg be a feasible solution to P and (\g, pto) be a feasible solution to D.
If f(zo) = g(Xo, o), then the duality gap is 0 and xy and (Ao, fo) are optimal solutions.

Proof. Let x* be the optimal solution to P and (\*, u*) be the optimal solution to D.
Then

9(Aos o) < g(N*, p7) < f(27) < (o) = 9(Ao, o)

Therefore,

9o, o) = g\, 1) = f(2%) = f(x0)

2 Wolfe Dual

We’ll now focus our attention on convex optimization problems. In the optimization
problem P:

e Let f be a convex function.
o Let ¢;(z) = —fi(z), where f; is a convex function.

e Let hj(z) = alx — b;, where a; € R? and b € RVl Let A be the matrix whose j™
column is a;.

Let WD be the optimization problem

max L(z, A\, ) where A > 0A V. L(x, A\, ) =0
TyA, [

This problem is called the Wolfe Dual of P.
Theorem 2 (Proved previously). Let f be C' and convex. Then
Vu,v € R f(v) > f(u) + Vi(u) (v —u)
Lemma 3 (Proved previously). Let (z*, \*, u*) be a KK T point. Then f(x*) = L(x*, u*, \*).

Theorem 4. Let (z*,\*,u*) be a KKT point of P. Then (x*,\*, u*) is the optimal
solution to WD.



Proof. Let (x, A\, u) be a feasible point of WD.

L(x*’ A*’ ILL*)
= f(z%) (by lemma 3)
> L(x*, A\ ) (by A > 0 and weak duality)

= f(z*) + Z Aifi(x") + Z,uj(afx* —bj)
> (f(x) + Vi(z)" (=" — 2))
+ Z Xi(fi(x) 4+ Vg, ()T (2" — )

T Z“J'(CLJT(J"* —x) - (agrl' — b)) (by theorem 2)
= (f(x) + Z Aifi(w) + ZM;’(CLJTJJ — bj)>
+ (z" —2)7 (Vf(a:) + Z i Vi (x) + Z,uja])

= L(x,\, ) (feasibility of WD implies V, L(z, A, 1) = 0)

Therefore, (z*, \*, 4*) maximizes WD. O

Therefore, to find the KKT point of a problem, we can optimize its Wolfe Dual.
Example 1.
minE |z||*> where ATz > b

The Lagrangian for this problem is

LX) = 3 o]~ AT(A"2 1)

VoL(z,\) =2 — A\
The Wolfe Dual s

1
max o |z||” = AT (ATz — b) where 2 — AX =0 and A > 0
We can simplify this by substituting x = AX and removing the constraint
1
m}’lebT)\ b |AN> where X >0

Example 2.

min ¢z where x > 0N Az > b
xX



The Lagrangian for this problem is
Lz, \7m)=c'e = N(Az —b) — 77z = (c— ATA—7)T2 + b7\

VoL(z,\7)=c— AT\ -7
The Wolfe Dual is

max(c — ATA — 7)Tx + 0"\ where c — ATA —7=0and A >0 and 7 > 0

T AT
We can simplify this by substituting m = ¢ — AT\ and removing the constraint

mz&x bI\ where ATX < c and A > 0

This gives us the dual linear program for this problem.
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