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1 Duality

Consider the optimization problem P :

min
x∈Rd

f(x) where ∀i ∈ I, ci(x) ≥ 0 ∧ ∀j ∈ J, hj(x) = 0

The corresponding Lagrangian is

L(x, λ, µ) = f(x)− λT c(x)− µTh(x)

Define g as

g(λ, µ) = min
x∈Rd

L(x, λ, µ)

Let D be this optimization problem:

max
λ,µ

g(λ, µ) where g(λ, µ) ̸= −∞∧ λ ≥ 0

Then D is said to be the dual of P .

Theorem 1 (Weak duality theorem). Let x0 be a feasible solution to P and (λ0, µ0) be
feasible solution to D. Then

g(λ0, µ0) ≤ L(x0, λ0, µ0) ≤ f(x0)

Proof.

g(λ0, µ0)

= min
x∈Rd

L(x, λ0, µ0)

≤ L(x0, λ0, µ0)

= f(x0)− λT
0 c(x0)− µTh(x0)

≤ f(x0) (λ0 ≥ 0 ∧ c(x0) ≥ 0 ∧ h(x0) = 0 by feasibility)

Definition 1 (Duality gap). Let x∗ be the optimal solution to P and (λ∗, µ∗) be the
optimal solution to D. Then the duality gap is defined to be the quantity

f(x∗)− g(λ∗, µ∗)
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Corollary 1.1. Let x0 be a feasible solution to P and (λ0, µ0) be a feasible solution to D.
If f(x0) = g(λ0, µ0), then the duality gap is 0 and x0 and (λ0, µ0) are optimal solutions.

Proof. Let x∗ be the optimal solution to P and (λ∗, µ∗) be the optimal solution to D.
Then

g(λ0, µ0) ≤ g(λ∗, µ∗) ≤ f(x∗) ≤ f(x0) = g(λ0, µ0)

Therefore,

g(λ0, µ0) = g(λ∗, µ∗) = f(x∗) = f(x0)

2 Wolfe Dual

We’ll now focus our attention on convex optimization problems. In the optimization
problem P :

• Let f be a convex function.

• Let ci(x) = −fi(x), where fi is a convex function.

• Let hj(x) = aTj x − bj, where aj ∈ Rd and b ∈ R|I|. Let A be the matrix whose jth

column is aj.

Let WD be the optimization problem

max
x,λ,µ

L(x, λ, µ) where λ ≥ 0 ∧∇xL(x, λ, µ) = 0

This problem is called the Wolfe Dual of P .

Theorem 2 (Proved previously). Let f be C1 and convex. Then

∀u, v ∈ Rd, f(v) ≥ f(u) +∇f (u)
T (v − u)

Lemma 3 (Proved previously). Let (x∗, λ∗, µ∗) be a KKT point. Then f(x∗) = L(x∗, µ∗, λ∗).

Theorem 4. Let (x∗, λ∗, µ∗) be a KKT point of P . Then (x∗, λ∗, µ∗) is the optimal
solution to WD.
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Proof. Let (x, λ, µ) be a feasible point of WD.

L(x∗, λ∗, µ∗)

= f(x∗) (by lemma 3)

≥ L(x∗, λ, µ) (by λ ≥ 0 and weak duality)

= f(x∗) +
∑
i

λifi(x
∗) +

∑
j

µj(a
T
j x

∗ − bj)

≥ (f(x) +∇f (x)
T (x∗ − x))

+
∑
i

λi(fi(x) +∇fi(x)
T (x∗ − x))

+
∑
j

µj(a
T
j (x

∗ − x)− (aTj x− bj)) (by theorem 2)

=

(
f(x) +

∑
i

λifi(x) +
∑
j

µj(a
T
j x− bj)

)

+ (x∗ − x)T

(
∇f (x) +

∑
i

λi ∇fi(x) +
∑
j

µjaj

)
= L(x, λ, µ) + (x∗ − x)T (∇xL(x, λ, µ))

= L(x, λ, µ) (feasibility of WD implies ∇xL(x, λ, µ) = 0)

Therefore, (x∗, λ∗, µ∗) maximizes WD.

Therefore, to find the KKT point of a problem, we can optimize its Wolfe Dual.

Example 1.

min
x

1

2
∥x∥2 where ATx ≥ b

The Lagrangian for this problem is

L(x, λ) =
1

2
∥x∥2 − λT (ATx− b)

∇xL(x, λ) = x− Aλ

The Wolfe Dual is

max
x,λ

1

2
∥x∥2 − λT (ATx− b) where x− Aλ = 0 and λ ≥ 0

We can simplify this by substituting x = Aλ and removing the constraint

max
λ

bTλ− 1

2
∥Aλ∥2 where λ ≥ 0

Example 2.

min
x

cTx where x ≥ 0 ∧ Ax ≥ b
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The Lagrangian for this problem is

L(x, λ, π) = cTx− λT (Ax− b)− πTx = (c− ATλ− π)Tx+ bTλ

∇xL(x, λ, π) = c− ATλ− π

The Wolfe Dual is

max
x,λ,π

(c− ATλ− π)Tx+ bTλ where c− ATλ− π = 0 and λ ≥ 0 and π ≥ 0

We can simplify this by substituting π = c− ATλ and removing the constraint

max
x,λ

bTλ where ATλ ≤ c and λ ≥ 0

This gives us the dual linear program for this problem.
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