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The active set method is a way of solving optimization problems with a convex quadratic
objective and linear constraints. In this method, we guess the active set of constraints and
then solve the resulting problem which has only equality constraints. We make multiple
such guesses and each guess helps refine the next guess.

1 Equality constraints

We’ll first figure out how to solve the optimization problem which has only equality
constraints:

min
x

f(x) where Ax = b

Here f(x) = 1
2
xTQx − hTx, where Q is symmetric and positive definite. The ith row of

A is aTi . x ∈ Rd and b ∈ Rm.

We’ll find a KKT point for this problem. Since the objective is strictly convex and the
constraints are linear, the KKT point gives us the unique global minimum of this problem.

L(x, µ) = f(x)− µT (Ax− b)

By stationarity, we get

∇f (x)− ATµ = 0 =⇒ Qx− ATµ = h

By primal feasibility, we get

Ax = b

These 2 conditions can be written as a system of linear equations. Solving this system
will give us the KKT point (x, λ).[

Q −AT

A 0

] [
x
µ

]
=

[
h
b

]

This system of equations is guaranteed to have a solution, since (x, λ) is a KKT point
iff it satisfies these conditions and the first-order necessary conditions for local minimum
imply that a KKT point must exist (regularity is ensured because the constraints are
linear).
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2 Inequality constraints

We’ll now try to solve this optimization problem:

min
x

f(x) where Ax ≥ b

Define argminset as

argminset
x

g(x) = {x̂ : g(x̂) = min
x

g(x)}

The subroutine eqsolve(Q, h,A, b) returns (x∗, µ∗) such that[
Q −AT

A 0

] [
x∗

µ∗

]
=

[
h
b

]
This means that

x∗ = argmin
x

Ax=b

1

2
xTQx− hTx

The subroutine blocking-constraints is defined as

blocking-constraints(A, x, u) = argminset
i

aTi u<0

aTi x− bi
−aTi u

Let AB denote the matrix obtained by taking all rows of A whose indices lie in B.
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Algorithm 1 active-set-method(Q, h,A, b, x(0)): x0 is the initial feasible point

1: B(0) = {i : aTi x(0) = bi}
2: t = 0
3: while true do
4: while true do
5: (u(t), µ(t)) = eqsolve(Q, h−Qx(t), AB(t) , 0)
6: if u(t) == 0 then
7: break

8: end if
9: I(t) = blocking-constraints(A, x(t), u(t))

10: α(t) =
(
1 if I(t) == {} else min

(
1,

aTi x(t)−bi
−aTi u(t)

))
, where i ∈ I(t).

11: x(t+1) = x(t) + α(t)u(t)

12: B(t+1) = B(t) ∪ (I(t) if α(t) < 1 else {})
13: t = t+ 1
14: end while
15: Find l(t) ∈ B(t) such that µ

(t)

l(t)
< 0.

16: if l(t) == null then

17: λi =

{
µ
(t)
i i ∈ B(t)

0 i ̸∈ B(t)

18: return (x(t), λ)
19: else
20: B(t+1) = B(t) − {l(t)}
21: x(t+1) = x(t)

22: t = t+ 1
23: end if
24: end while

Lemma 1 (Invariants). Let A(x) = {i : aTi x = bi}. The following are true for all t:

• x(t) is a feasible solution.

• B(t) ⊆ A(x(t)).

Proof by induction.
Base case: x(0) is given to be feasible. B(0) = A(x(0)) by line 1. Therefore, the hypothesis
holds for t = 0.

Inductive step: Assume the hypothesis holds at t.

Case 1: u(t) ̸= 0

If u(t) ̸= 0, then x(t+1) = x(t) + α(t)u(t). Let J = {i : aTi u(t) < 0}. Then ∀i ∈ J ,

α(t) ≤ aTi x
(t) − bi

−aTi u
(t)

=⇒ bi ≤ aTi (x
(t) + α(t)u(t)) = aTi x

(t+1)

When i ̸∈ J , then aTi u
(t) ≥ 0. Also, aTi x

(t) ≥ bi, by inductive hypothesis. Therefore,

aTi x
(t+1) = aTi x

(t) + α(t)aTi u
(t) ≥ bi
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Therefore, x(t+1) is feasible.

i ∈ B(t) =⇒ aTi x
(t) = bi (B(t) ⊆ A(x(t)) by inductive hypothesis)

(u(t), µ(t)) = eqsolve(Q, h−Qx(t), AB(t) , 0) =⇒ ∀i ∈ B(t), aTi u
(t) = 0

Therefore, ∀i ∈ B(t),

aTi x
(t+1) = aTi x

(t) + α(t)aTi u
(t) = bi

Therefore, B(t) ⊆ A(x(t+1)).

If α(t) ≥ 1 or I(t) = {}, then B(t+1) = B(t) ⊆ A(x(t+1)). Suppose α(t) < 1 and I(t) ̸= {}.
Then B(t+1) = B(t) ∪ I(t) and ∀i ∈ I(t),

α(t) =
aTi x

(t) − bi
−aTi u

(t)
=⇒ bi = aTi (x

(t) + α(t)u(t)) = aTi x
(t+1)

Therefore, I(t) ⊆ A(x(t+1)) which implies that B(t+1) ⊆ A(x(t+1)).

Case 2: u(t) = 0

By inductive hypothesis, x(t) is feasible. Therefore, x(t+1) = x(t) is also feasible. By
inductive hypothesis, B(t) ⊆ A(x(t)). Therefore, B(t+1) ⊂ B(t) ⊆ A(x(t+1)).

Therefore, the inductive hypothesis holds at t + 1. By mathematical induction, the
inductive hypothesis holds for all t ≥ 0.

Theorem 2 (Correctness). If active-set-method returns (x(t), λ), then x(t) is a global
minimum.

Proof. We’ll prove that (x(t), λ) is a KKT point. This is a sufficient condition for minimum
since this is a convex optimization problem.

The algorithm enters the conditional block on line 16 iff u(t) = 0 and µ
(t)
i ≥ 0 for all

i ∈ B(t).

(0, µ) = eqsolve(Q, h−Qx(t), AB(t) , 0)

=⇒ −AT
B(t)µ = h−Qx(t)

=⇒ ∇f (x
(t)) = AT

B(t)µ =
∑
i∈B(t)

µiai =
m∑
i=1

λiai

This proves stationarity for (x(t), λ).

Primal feasibility follows from lemma 1.

Dual feasibility follows from the fact that λi = µ
(t)
i ≥ 0 for all i ∈ B(t) and λi = 0 for all

i ̸∈ B(t).

When i ̸∈ B(t), then λi = 0. When i ∈ B(t), then aTi x
(t) = bi (since B(t) ⊆ A(x(t)) by

lemma 1). This ensures complementary slackness.

Therefore, (x(t), λ) is a KKT point.
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Lemma 3. B(t) = B(t+1) =⇒ u(t+1) = 0

Proof.

(I(t) = {} =⇒ α(t) = 1)

=⇒ (α(t) < 1 =⇒ I(t) ̸= {} =⇒ B(t+1) ̸= B(t))

=⇒ (B(t+1) = B(t) =⇒ α(t) = 1)

=⇒ (B(t+1) = B(t) =⇒ x(t+1) = x(t) + u(t))

By lemma 1, x(t) + u(t) is feasible.

(u(t), µ(t)) = eqsolve(Q, h−Qx(t), AB(t) , 0)

=⇒ u(t) = argmin
u

A
B(t)u=0

f(x(t) + u)

=⇒ x(t+1) = x(t) + u(t) = argmin
x

∀i∈B(t),aTi x=bi

f(x)

=⇒ x(t+1) = argmin
x

∀i∈B(t+1),aTi x=bi

f(x) (B(t+1) = B(t))

(u(t+1), µ(t+1)) = eqsolve(Q, h−Qx(t+1), AB(t+1) , 0)

=⇒ u(t+1) = argmin
u

A
B(t+1)u=0

f(x(t+1) + u)

=⇒ x(t+1) + u(t+1) = argmin
x

∀i∈B(t+1),aTi x=bi

f(x)

Therefore, x(t+1) = x(t+1) + u(t+1) =⇒ u(t+1) = 0.

Therefore, if the algorithm gets stuck in the inner while loop, B(t+1) ̸= B(t). But in each
iteration, we add a constraint and there are a finite number of constraints. Therefore,
it’s not possible to get stuck in the inner while loop.

Lemma 4. If the algorithm does not terminate in the kth step,

u(k) = 0 =⇒ (aTl(k)u
(k+1) > 0 ∧∇f (x

(k))Tu(k+1) < 0 ∧ f(x(k) + u(k+1)) < f(x(k)))

Proof. Let g(t) = ∇f (x
(t))T = Qx(t) − h. For any t,

(u(t), µ(t)) = eqsolve(Q, h−Qx(t), AB(t) , 0)

=⇒
[

Q −AT
B(t)

AB(t) 0

] [
u(t)

µ(t)

]
=

[
h−Qx(t)

0

]
=⇒ Qu(t) − AT

B(t)µ
(t) = h−Qx(t) = −g(t) ∧ AB(t)u = 0

=⇒

g(t) +Qu(t) = AT
B(t)µ

(t) =
∑
i∈B(t)

µ
(t)
i ai

 ∧ (∀i ∈ B(t), aTi u = 0)
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For notational convenience, let l = l(k). Since u(k) = 0, x(k+1) = x(k) =⇒ g(k+1) = g(k)

and B(k+1) = B(k) − {l}. Since the algorithm didn’t terminate, µ
(k)
l < 0.

g(k) = g(k) +Qu(k) =
∑

i∈B(k)

µ
(k)
i ai = µ

(k)
l al +

∑
i∈B(k+1)

µ
(k)
i ai

g(k+1) +Qu(k+1) =
∑

i∈B(k+1)

µ
(k+1)
i ai

On subtracting these 2 equations, we get

Qu(k+1) = −µ
(k)
l al +

∑
i∈B(k+1)

(µ
(k+1)
i − µ

(k)
i )ai

∀i ∈ B(k+1), aTi µ
(k+1)
i = 0. Therefore,

(u(k+1))TQu(k+1)

= −µ
(k)
l aTl u

(k+1) +
∑

i∈B(k+1)

(µ
(k+1)
i − µ

(k)
i )aTi u

(k+1)

= −µ
(k)
l aTl u

(k+1)

=⇒ aTl u
(k+1) =

(u(k+1))TQu(k+1)

−µ
(k)
l

> 0 (Q is PD and µ
(k)
l < 0)

g(k) +Qu(k+1) =
∑

i∈B(k+1)

µ
(k+1)
i ai

=⇒ g(k)
T
u(k+1) + u(k+1)TQu(k+1) =

∑
i∈B(k+1)

µ
(k+1)
i aiu

(k+1) = 0

=⇒ g(k)
T
u(k+1) = −u(k+1)TQu(k+1)

f(x(k) + u(k+1))

= f(x(k)) + g(k)
T
u(k+1) +

1

2
u(k+1)TQu(k+1) (Taylor series)

= f(x(k))− 1

2
u(k+1)TQu(k+1)

< f(x(k)) (Q is PD)

Corollary 4.1. u(k) = 0 =⇒ u(k+1) ̸= 0

Lemma 5. α(t) > 0 =⇒ f(x(t+1)) < f(x(t))

Proof. For α(t) to exist, u(t) must be non-zero. Therefore, x(t) ̸= x(t) + u(t).

u(t) = argmin
u

A
B(t)u=0

f(x(t) + u) =⇒ x(t) + u(t) = argmin
x

(AB(t))x=(bB(t))

f(x)
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Since x(t) satisfies AB(t)x = bB(t) , it is a feasible solution to the above optimization
problem. However, x(t) + u(t) is the optimial solution and x(t) ̸= x(t) + u(t). Since f is
a strictly convex function, it has a unique global minimum. Therefore, f(x(t) + u(t)) <
f(x(t)).

f(x(t+1)) = f(x(t) + α(t)u(t))

= f((1− α(t))x(t) + α(t)(x(t) + u(t)))

≤ (1− α(t))f(x(t)) + α(t)f(x(t) + u(t))

< (1− α(t))f(x(t)) + α(t)f(x(t)) (f(x(t) + u(t)) < f(x(t)) and α(t) > 0)

= f(x(t))

Lemma 6. Let N (t) = {i : aTi u(t) < 0}. Then

B(t) ∩N (t) = {} A(x(t)) ∩N (t) = (A(x(t))−B(t)) ∩N (t)

α(t) = 0 ⇐⇒ A(x(t)) ∩N (t) ̸= {} ⇐⇒ I(t) = A(x(t)) ∩N (t) ∧ I(t) ̸= {}
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