CMO: Constrained optimization for convex functions

Eklavya Sharma

1 Convex function and convex constraints

Let's analyze the following problem:

 \min_x $f(x)$ where $c_i(x) \leq 0 \quad \forall i \in I$ $h_j(x) = 0 \quad \forall j \in I$

Here f and c_i are convex and C^1 and h_j is linear, i.e. $h_j(x) = a_j^T x - b_j$.

1.1 Feasible region is a convex set

Lemma 1 (Homework). The set $S_i = \{x : c_i(x) \leq 0\}$ is convex.

Lemma 2 (Homework). The set $S_j = \{x : h_j(x) = 0\}$ is convex.

Lemma 3 (Homework). The intersection of convex sets is convex.

1.2 KKT point gives global minimum

Define the Lagrangian as

 $L(x, \lambda, \mu) = f(x) + \lambda^T c(x) + \mu^T h(x)$

Lemma 4. If $\lambda_i \geq 0$ and x is a feasible point, then $f(x) \geq L(x, \mu, \lambda)$.

Proof. Since x is a feasible point,

$$
c_i(x) \le 0 \land h_j(x) = 0
$$

\n
$$
\implies \lambda^T c(x) \le 0 \land \mu^T h(x) = 0
$$

\n
$$
\implies f(x) + \lambda^T c(x) + \mu^T h(x) \le f(x)
$$

\n
$$
\implies L(x, \lambda, \mu) \le f(x)
$$

Lemma 5. Let (x^*, λ^*, μ^*) be a KKT point. Then $f(x^*) = L(x^*, \mu^*, \lambda^*)$.

 \Box

Proof.

$$
\lambda_i^* c_i(x^*) = 0 \land h_j(x^*) = 0 \qquad \text{(complementary slackness and primal feasibility)}
$$
\n
$$
\implies \lambda^{*T} c(x^*) = 0 \land \mu^{*T} h(x^*) = 0
$$
\n
$$
\implies f(x^*) + \lambda^{*T} c(x^*) + \mu^{*T} h(x^*) = f(x^*)
$$
\n
$$
\implies L(x^*, \lambda^*, \mu^*) = f(x)
$$

 \Box

Theorem 6 (Proved previously). Let f be C^1 and convex. Then

$$
\forall u, v \in \mathbb{R}^d, f(v) \ge f(u) + \nabla_f(u)^T (v - u)
$$

Theorem 7. Let (x^*, λ^*, μ^*) be a KKT point. Then x^* is a constrained global minimum of f .

Proof. Let x be a feasible point.

$$
f(x) \geq L(x, \lambda^*, \mu^*)
$$
 (by lemma 4)
\n
$$
= f(x) + \sum_{i} \lambda_i^* c_i(x) + \sum_{j} \mu_j^* (a_j^T x - b_j)
$$

\n
$$
\geq (f(x) + \nabla_f(x^*)^T (x - x^*))
$$

\n
$$
+ \sum_{i} \lambda_i^* (c_i(x^*) + \nabla_{c_i}(x^*)^T (x - x^*))
$$

\n
$$
+ \sum_{j} \mu_j^* (a_j^T (x - x^*) + (a_j^T x^* - b_j))
$$
 (by theorem 6)
\n
$$
= \left(f(x^*) + \sum_{i} \lambda_i^* c_i(x^*) + \sum_{j} \mu_j^* (a_j^T x^* - b_j) \right)
$$

\n
$$
+ (x - x^*)^T \left(\nabla_f(x^*) + \sum_{i} \lambda_i^* \nabla_{c_i}(x^*) + \sum_{j} \mu_j^* a_j \right)
$$
 (rearrange terms)
\n
$$
= L(x^*, \lambda^*, \mu^*) + (x - x^*)^T (\nabla_x L)(x^*, \lambda^*, \mu^*)
$$

\n
$$
= f(x^*)
$$
 (by lemma 5 and stationarity)

Since for all feasible points $f(x) \ge f(x^*)$, x^* is a constrained global minimum of f. \Box Note that unlike the necessary conditions for local minimum, here we do not require

regularity.

1.3 Example: Projection over ball

Consider the optimization problem:

$$
\min_{x} \frac{1}{2} \|x - z\|^2 \text{ where } \|x\|^2 \le r^2
$$

Here z lies outside the feasible region.

 $||x-z||^2$ and $||x||^2$ are convex functions (because their hessian is 2I, which is positive definite), so this is a convex optimization problem.

$$
L(x, \lambda) = \frac{1}{2} ||x - z||^2 + \lambda (||x||^2 - r^2)
$$

Applying the KKT conditions, we get

- Stationarity: $z = (2\lambda + 1)x$.
- Primal feasibility: $||x||^2 \leq r^2$.
- Dual feasibility: $\lambda \geq 0$.
- Complementary slackness: $\lambda(||x||^2 r^2) = 0$.

If we take $\lambda = 0$, then stationarity gives us $x = z$. This violates feasibility, so this is not possible. Therefore, complementary slackness gives us $||x||^2 = r^2$. On simplifying, we get

$$
x = \frac{r}{\|z\|} z \qquad \qquad \lambda = \frac{1}{2} \left(\frac{\|z\|}{r} - 1 \right) \qquad \qquad f(x) = \frac{1}{2} (r - \|z\|)^2
$$