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1 Convex function and convex constraints

Let’s analyze the following problem:

minx f(x)
where ci(x) ≤ 0 ∀i ∈ I

hj(x) = 0 ∀j ∈ I

Here f and ci are convex and C1 and hj is linear, i.e. hj(x) = aTj x− bj.

1.1 Feasible region is a convex set

Lemma 1 (Homework). The set Si = {x : ci(x) ≤ 0} is convex.

Lemma 2 (Homework). The set Sj = {x : hj(x) = 0} is convex.

Lemma 3 (Homework). The intersection of convex sets is convex.

1.2 KKT point gives global minimum

Define the Lagrangian as

L(x, λ, µ) = f(x) + λT c(x) + µTh(x)

Lemma 4. If λi ≥ 0 and x is a feasible point, then f(x) ≥ L(x, µ, λ).

Proof. Since x is a feasible point,

ci(x) ≤ 0 ∧ hj(x) = 0

=⇒ λT c(x) ≤ 0 ∧ µTh(x) = 0

=⇒ f(x) + λT c(x) + µTh(x) ≤ f(x)

=⇒ L(x, λ, µ) ≤ f(x)

Lemma 5. Let (x∗, λ∗, µ∗) be a KKT point. Then f(x∗) = L(x∗, µ∗, λ∗).
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Proof.

λ∗
i ci(x

∗) = 0 ∧ hj(x
∗) = 0 (complementary slackness and primal feasibility)

=⇒ λ∗T c(x∗) = 0 ∧ µ∗Th(x∗) = 0

=⇒ f(x∗) + λ∗T c(x∗) + µ∗Th(x∗) = f(x∗)

=⇒ L(x∗, λ∗, µ∗) = f(x)

Theorem 6 (Proved previously). Let f be C1 and convex. Then

∀u, v ∈ Rd, f(v) ≥ f(u) +∇f (u)
T (v − u)

Theorem 7. Let (x∗, λ∗, µ∗) be a KKT point. Then x∗ is a constrained global minimum
of f .

Proof. Let x be a feasible point.

f(x) ≥ L(x, λ∗, µ∗) (by lemma 4)

= f(x) +
∑
i

λ∗
i ci(x) +

∑
j

µ∗
j(a

T
j x− bj)

≥
(
f(x) +∇f (x

∗)T (x− x∗)
)

+
∑
i

λ∗
i

(
ci(x

∗) +∇ci(x
∗)T (x− x∗)

)
+
∑
j

µ∗
j

(
aTj (x− x∗) + (aTj x

∗ − bj)
)

(by theorem 6)

=

(
f(x∗) +

∑
i

λ∗
i ci(x

∗) +
∑
j

µ∗
j(a

T
j x

∗ − bj)

)

+ (x− x∗)T

(
∇f (x

∗) +
∑
i

λ∗
i ∇ci(x

∗) +
∑
j

µ∗
jaj

)
(rearrange terms)

= L(x∗, λ∗, µ∗) + (x− x∗)T (∇xL)(x
∗, λ∗, µ∗)

= f(x∗) (by lemma 5 and stationarity)

Since for all feasible points f(x) ≥ f(x∗), x∗ is a constrained global minimum of f .

Note that unlike the necessary conditions for local minimum, here we do not require
regularity.

1.3 Example: Projection over ball

Consider the optimization problem:

min
x

1

2
∥x− z∥2 where ∥x∥2 ≤ r2

Here z lies outside the feasible region.
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∥x− z∥2 and ∥x∥2 are convex functions (because their hessian is 2I, which is positive
definite), so this is a convex optimization problem.

L(x, λ) =
1

2
∥x− z∥2 + λ(∥x∥2 − r2)

Applying the KKT conditions, we get

• Stationarity: z = (2λ+ 1)x.

• Primal feasibility: ∥x∥2 ≤ r2.

• Dual feasibility: λ ≥ 0.

• Complementary slackness: λ(∥x∥2 − r2) = 0.

If we take λ = 0, then stationarity gives us x = z. This violates feasibility, so this is not
possible. Therefore, complementary slackness gives us ∥x∥2 = r2. On simplifying, we get

x =
r

∥z∥
z λ =

1

2

(
∥z∥
r

− 1

)
f(x) =

1

2
(r − ∥z∥)2
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