CMO: Constrained Optimization

Eklavya Sharma

In constrained optimization, we have to find

x* = argmin f(x)
xeC

where C' € R? is a closed set. C is called the feasible region. We say that x is feasible iff
xeC.

The methods which we developed for unconstrained optimization often don’t work for
constrained optimization because properties of optimal solutions are different here. For
example, if z* is an unconstrained minimum of f, then V;(2*) = 0. This doesn’t hold
for constrained minima. ming,ep o 22 is an example.

We’ll consider several special cases of constrained optimization.
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1 Introduction

Definition 1 (Feasible directions). u € R? is feasible direction at v € C' iff
Ja > 0,Va € [0,a],z4+ au e C
The set of feasible directions at x is denoted by FS(z).

Theorem 1. If x is a local minimum of f, then there is no feasible descent direction.
Formally,

Vu € FS(x), Vi(z)Tu >0

Proof Sketch. If there is a feasible descent direction u at z, then for any arbitrarily small
a, we can decrease f by moving « distance towards u. So f is not a local minimum. [J

Note that the converse need not be true. Let x be a saddle point of f and let there be no
constraints. Then every direction is not a descent direction (and not an ascent direction)
but x is not a local minimum.



2 Projection onto a convex set

Theorem 2. Let C' be a convex set. Let x* = argmin, . f(x). Then
Ve e C,x—a" € FS(z")

In this section, we’ll now fix the objective function to be f(x) = ||z — z||* and consider
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the feasible region C' to be convex. Also, assume that z ¢ C.

Definition 2 (Projection). Let x* = argmin, . f(z). Then z* is called the projection of
z onto C.

Theorem 3.

r* = argmin f(z) <= (Vo € C,(z* — 2)(x — 2*) > 0)
zeC

Proof. Let 2* = argmin, .. By theorem 2, we get that
Ve e Cyx — 2" € FS(x™)
By theorem 1, we get that
Vo € O, Vi(z*) (x — 2*) > 0
= Vo el (v"—2) (v —2*) >0

Now assume that Vz € C, (z* — 2)T(x — z*) > 0.

@) = Sl —2%) + (@ - )
L w4 e = 22 @ )T - o)
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Therefore, * = argmin . f(x). O

Theorem 4. There is a half-space which separates C and z. Formally,
Ve e C,wle > wlz

where w = x* — z.

Proof.
(% = 2)T(x —2*) >0 (by theorem 3)
— (2" —2)'x > (2 —2)'2*
> (2% —2) (2" — 2+ 2)
> |la* =z + (2* — )"z
> (2% — 2)72



3 Inequality constraints

Define the feasible region as

C={x:Viel,c(x)>0)A (Vi€ E hj(x)=0)

Here {¢; : i € I'} is the set of inequality constraints and {h; : ¢ € I'} is the set of equality
constraints. Since we can write the constraint h;(z) = 0 as the 2 constraints h;(z) > 0
and —h;(x) > 0, we'll ignore equality constraints for now.

Our minimization algorithm will iteratively choose a feasible descent direction and make
a small step in that direction.

By the definition of feasible direction, we get
u € FS(z) <= Ja>0,Va e [0,a],¢(x+au) >0
Also, for z € C, define LFS (called linearized feasible directions) as

{Rd if ¢;(z) > 0

LES(r) =] (u: V. (2)Tu >0} if e(x) = 0

iel
Intuitively, LF'S should be the same as FS. Unfortunately, they need not be the same.
Define descent directions (DS) as
u € DS(x) <= Vi(z)"u<0

When FS(z) N DS(x) = LFS(z) N DS(x), we say that x is regular. Regularity always
holds when the constraints are linear.

At a point x, a constraint ¢; is said to be active iff ¢;(x) = 0.

Theorem 5 (Farkas’ Lemma). Let A be a d by m matriz and b € R, For a vector x, let
x > 0 mean that all components of x are non-negative. Let T = {u | bTu < 0N ATu > 0}.

Let L={\|b=AXAX>0}. Then T = {} < L+ {}.

Let I’ be the set of active constraints at z*. Let |I’| = m. Let A be the matrix whose i*!
column is V,,(z*). Then A is a d by m matrix. Let b = V;(2*). Then

u € LFS(z*) <= ATu >0 u € DS(2*) <= b'u<0
Then by Farkas’ lemma, we get that

LES(z")NDS(z") ={} <= (3A>0,b= A))

For such a A\, we have

Vi(z*) = A=)\ V. (z")
il
This is equivalent to saying that
Vi(z*) = Z Ai Ve, (") where A\i¢;(2%) =0

el

If 2* is a local minimum and a regular point, then LES(z*)NDS(2*) = {}. So there exists
A € R™ such that



Primal feasibility) Vi € I, ¢;(z*) > 0.

Stationarity) Vi(z*) = >,c; A Ve, (27).

(
(
(Dual feasibility) Vi € I, \; > 0.
(

Complementary slackness) Vi € I, \;c;(z*) = 0.

These 4 conditions are called ‘KKT conditions’. When these conditions hold for z and
A, (z,A) is said to be a KKT point.

This is generally stated using the Lagrangian function (we're also going to consider the
equality constraints now):

Lia, A pr) = f(a) = Ne(w) — u"h(x)

Primal feasibility) c¢(z*) > 0 and h(z*) = 0.

Stationarity) V,L(z, A\, u) = 0.

(
(
(Dual feasibility) A > 0.
(

Complementary slackness) Vi € I, \;c;(z*) = 0.
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