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In constrained optimization, we have to find

x∗ = argmin
x∈C

f(x)

where C ∈ Rd is a closed set. C is called the feasible region. We say that x is feasible iff
x ∈ C.

The methods which we developed for unconstrained optimization often don’t work for
constrained optimization because properties of optimal solutions are different here. For
example, if x∗ is an unconstrained minimum of f , then ∇f (x

∗) = 0. This doesn’t hold
for constrained minima. minx∈[1,2] x

2 is an example.

We’ll consider several special cases of constrained optimization.
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1 Introduction

Definition 1 (Feasible directions). u ∈ Rd is feasible direction at x ∈ C iff

∃α > 0,∀α ∈ [0, α], x+ αu ∈ C

The set of feasible directions at x is denoted by FS(x).

Theorem 1. If x is a local minimum of f , then there is no feasible descent direction.
Formally,

∀u ∈ FS(x),∇f (x)
Tu ≥ 0

Proof Sketch. If there is a feasible descent direction u at x, then for any arbitrarily small
α, we can decrease f by moving α distance towards u. So f is not a local minimum.

Note that the converse need not be true. Let x be a saddle point of f and let there be no
constraints. Then every direction is not a descent direction (and not an ascent direction)
but x is not a local minimum.
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2 Projection onto a convex set

Theorem 2. Let C be a convex set. Let x∗ = argminx∈C f(x). Then

∀x ∈ C, x− x∗ ∈ FS(x∗)

In this section, we’ll now fix the objective function to be f(x) = 1
2
∥x− z∥2 and consider

the feasible region C to be convex. Also, assume that z ̸∈ C.

Definition 2 (Projection). Let x∗ = argminx∈C f(x). Then x∗ is called the projection of
z onto C.

Theorem 3.

x∗ = argmin
x∈C

f(x) ⇐⇒ (∀x ∈ C, (x∗ − z)T (x− x∗) ≥ 0)

Proof. Let x∗ = argminx∈C . By theorem 2, we get that

∀x ∈ C, x− x∗ ∈ FS(x∗)

By theorem 1, we get that

∀x ∈ C,∇f (x
∗)T (x− x∗) ≥ 0

=⇒ ∀x ∈ C, (x∗ − z)T (x− x∗) ≥ 0

Now assume that ∀x ∈ C, (x∗ − z)T (x− x∗) ≥ 0.

f(x) =
1

2
∥(x− x∗) + (x∗ − z)∥2

=
1

2
∥x− x∗∥2 + 1

2
∥x∗ − z∥2 + (x∗ − z)T (x− x∗)

≥ f(x∗)

Therefore, x∗ = argminx∈C f(x).

Theorem 4. There is a half-space which separates C and z. Formally,

∀x ∈ C,wTx > wT z

where w = x∗ − z.

Proof.

(x∗ − z)T (x− x∗) ≥ 0 (by theorem 3)

=⇒ (x∗ − z)Tx ≥ (x∗ − z)Tx∗

≥ (x∗ − z)T (x∗ − z + z)

≥ ∥x∗ − z∥2 + (x∗ − z)T z

> (x∗ − z)T z
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3 Inequality constraints

Define the feasible region as

C = {x : (∀i ∈ I, ci(x) ≥ 0) ∧ (∀i ∈ E, hi(x) = 0)

Here {ci : i ∈ I} is the set of inequality constraints and {hi : i ∈ I} is the set of equality
constraints. Since we can write the constraint hi(x) = 0 as the 2 constraints hi(x) ≥ 0
and −hi(x) ≥ 0, we’ll ignore equality constraints for now.

Our minimization algorithm will iteratively choose a feasible descent direction and make
a small step in that direction.

By the definition of feasible direction, we get

u ∈ FS(x) ⇐⇒ ∃α > 0,∀α ∈ [0, α], ci(x+ αu) ≥ 0

Also, for x ∈ C, define LFS (called linearized feasible directions) as

LFS(x) =
⋂
i∈I

{
Rd if ci(x) > 0

{u : ∇ci(x)
Tu ≥ 0} if ci(x) = 0

Intuitively, LFS should be the same as FS. Unfortunately, they need not be the same.

Define descent directions (DS) as

u ∈ DS(x) ⇐⇒ ∇f (x)
Tu < 0

When FS(x) ∩ DS(x) = LFS(x) ∩ DS(x), we say that x is regular. Regularity always
holds when the constraints are linear.

At a point x, a constraint ci is said to be active iff ci(x) = 0.

Theorem 5 (Farkas’ Lemma). Let A be a d by m matrix and b ∈ Rd. For a vector x, let
x ≥ 0 mean that all components of x are non-negative. Let T = {u | bTu < 0∧ATu ≥ 0}.
Let L = {λ | b = Aλ ∧ λ ≥ 0}. Then T = {} ⇐⇒ L ̸= {}.

Let I ′ be the set of active constraints at x∗. Let |I ′| = m. Let A be the matrix whose ith

column is ∇ci(x
∗). Then A is a d by m matrix. Let b = ∇f (x

∗). Then

u ∈ LFS(x∗) ⇐⇒ ATu ≥ 0 u ∈ DS(x∗) ⇐⇒ bTu < 0

Then by Farkas’ lemma, we get that

LFS(x∗) ∩DS(x∗) = {} ⇐⇒ (∃λ ≥ 0, b = Aλ)

For such a λ, we have

∇f (x
∗) = Aλ =

∑
i∈I′

λi ∇ci(x
∗)

This is equivalent to saying that

∇f (x
∗) =

∑
i∈I

λi ∇ci(x
∗) where λici(x

∗) = 0

If x∗ is a local minimum and a regular point, then LFS(x∗)∩DS(x∗) = {}. So there exists
λ ∈ Rm such that
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• (Primal feasibility) ∀i ∈ I, ci(x
∗) ≥ 0.

• (Stationarity) ∇f (x
∗) =

∑
i∈I λi ∇ci(x

∗).

• (Dual feasibility) ∀i ∈ I, λi ≥ 0.

• (Complementary slackness) ∀i ∈ I, λici(x
∗) = 0.

These 4 conditions are called ‘KKT conditions’. When these conditions hold for x and
λ, (x, λ) is said to be a KKT point.

This is generally stated using the Lagrangian function (we’re also going to consider the
equality constraints now):

L(x, λ, µ) = f(x)− λT c(x)− µTh(x)

• (Primal feasibility) c(x∗) ≥ 0 and h(x∗) = 0.

• (Stationarity) ∇xL(x, λ, µ) = 0.

• (Dual feasibility) λ ≥ 0.

• (Complementary slackness) ∀i ∈ I, λici(x
∗) = 0.
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