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1 Quasi-Newton method template

Newton’s method’s update rule:
wpin = oy — Hy ' (2y) Vi(2)

This method is not useful, because it requires inverting the hessian, which can be pro-
hibitively computationally expensive for high-dimensional data.

We will therefore try to model the change in the hessian’s inverse, and approximate the
hessian’s inverse instead of calculating it exactly.

Let gr = Vi(xr), 0p = T — o and Y, = Goy1 — G-
Vi(xps1) = Vi(zg) + Hy(zg) (@1 — x1) (by differentiating Taylor series)
= 0~ Hf_l(a:k)fyk
This inspires us to use an update rule of this form:
Th1 = Tp — Apgr
and apply the following constraint on Ay:
Ok = Ap1Vk (1)

This constraint is called the ‘Quasi-Newton condition’.

Also, we must ensure that Ay is symmetric and positive (semi)definite.



Note that the Quasi-Newton condition is d equations, whereas there are d? entries in Ay.
We therefore have a lot of slack in terms of how to update A.

In all Quasi-Newton methods described next, we choose Ay as any matrix which is sym-
metric and positive (semi)definite. Generally, the identity matrix is used. Then we use
Apg, 0, and 7y, to obtain Ajy; via an update rule, like ‘rank-1 update’, ‘rank-2 update’ or
‘BFGS’.

2 Rank-1 update

Here we impose a condition of the form A, = Ay + cuu?, where ¢ € R and u € R?
(Note that rank(uu®) = 1).

It’s easy to see that Ag, is symmetric for all ¢ and positive definite for ¢ > 0.
To get concrete values of ¢ and u, we’ll plug the rank-1 update condition into the Quasi-
Newton condition (1).

6 = (A + cun” )y, = (v vi)u = 6 — Ay

Therefore, u is parallel to 0, — Apyg. Let u = 0 — Agyr. Then
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With these specific values of u and ¢, the rank-1 update condition will satisfy all required
conditions (symmetry, positive definiteness and Quasi-Newton condition) if ¢ > 0.

Unfortunately, it has not yet been proved or disproved whether ¢ > 0.

2.1 Analysis for quadratic function

Let f(z) = 227Qa — b"z, where Q is symmetric and positive definite. Then Vj(z) =

Lemma 1.
Vi € [0,k], Agr1vi = 6

Proof by induction on k.
P(l):Vie[0,l—1], Ay =6

We have to prove P(l) for all [ > 1.

Base case: Since A; was constructed to follow the Quasi-Newton condition, §p =
Al’YO — P(l)

Inductive step: Assume P(l) is true. We'll prove P(l + 1).



Let ¢ € [0,1 —1].

uu®
A1y = (Az + uT_%) Vi (here u = 6; — Ayy;)
T..
=0; + ZT?YZU (A;y; = 0; by induction hypothesis)
1

uly; = (6 — )"

=0/ v = Arvi

=6 vi — 7} 0 (by induction hypothesis)
= &/ Q0 — 6/ Q5 (Vi 75 = Q0;)
=0

Therefore, A;,17y; = 0; for all i € [0,{ — 1]. Since A;,; was constructed to follow the
Quasi-Newton condition, A; 1y, = §;. Therefore, P(l + 1) holds true. O

Lemma 2. If all §; were orthonormal, then Ag = Q~'.

Proof. By lemma 1,
Therefore, (1,9;) is an eigenpair for A,Q.

Let P be the matrix whose i columns is ;. P exists because real symmetric matrices
are orthogonally diagonalizable and A4Q is real and symmetric. Then A;Q = PIPT =
I — A;= Q_l. ]

Lemma 3. If all 6; are linearly independent, then Ay = Q1.

Proof. Let A = {dg,...,0q_1}. Since A C R? |A] = d = dim(R?) and A is linearly
independent, A is a basis of R%.

Let z € R%. Let 2 = Z?;ol ¢;0;. Then

d—1 -1 d—1

AgQr = ZAdQ(Ci(Si) = Cz‘(Ad%‘) = cidj = x
=0

U

I
<)
<.
I
=)

Therefore, Vo € R4, (4,Q)x = x, so A,Q = 1.

Note that the proof is not specific to rank-1 updates. Its correctness relies only on the
Quasi-Newton condition and f being quadratic. m

Since Ay = Q7! the (d + 1)™ iteration would be identical to Newton’s method. So the
rank-1 update method will converge to the minimum in at most d + 1 iterations.
2.2 Unresolved questions

e A, is positive definite when ¢ > 0. Is ¢ > 07

e Is {0, 01,...} linearly independent?



3 Rank-2 update

Api1 = Ap + cun” + bov”
It’s easy to see that Ag,q is symmetric iff A is symmetric.

By Quasi-Newton condition, we get
O = Appiye = (culp)u+ (bo' v = 6 — Apy

Let u = 0 and v = Apyg. Then

1 1 b —1 —1
CcC = —= =
oIy, yE Ay

uTy,

00 B Akt Ay,

Apoy = Ay +
TR Ty AT Ay

3.1 Analysis for quadratic function

Let f(z) = 327Qxz — b"2. Then v, = Qb
Lemma 4 (Symmetric square root of a matrix). If A is a symmetric and positive definite

matriz, then 3L such that A = L? and L is symmetric, positive semidefinite and invertible.

Proof. Since A is real and symmetric, it is orthogonally diagonalizable. So there is a
matrix P and a diagonal matrix D such that A = PDPT and PPT = PTP = I. Since
A is positive definite, all diagonal entries of D are positive. Therefore, v/D exists. Also,

all entries of v/D are positive, so \/571 exists. Let L = Pv/DPT. Then L is symmetric
and L? = A.

W' L = u"(PVDPTYu = (PTu)"VD(PTu) > 0
Therefore, L is also positive semidefinite. Also,
L(PVD 'PT) = PVDPTPVD PT =1

Therefore, L=! = P\/E_IPT. O]

Theorem 5. Let Ay be symmetric and positive definite. Then Agyq1 is positive definite.

Proof.

1 1
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We'll now prove that Ay, — cuu? is positive semidefinite. Let w € R? — {0}.

w! (App — cun®)w
= w’ (A + bvv )w
(w Apy)?

T
=w" Apw —
Vi Ak Ve



Since Ay is symmetric and positive definite, it has a symmetric and invertible square root

L.

w! (Apy1 — cunw

—_ wTLTLw o (wTLTL’yk)Z
Ve LT Ly
_ HLwHZ B ((Lw)T(L’Yk)y
[ Lvel[?
>0 (by Cauchy-Schwarz inequality)

Therefore, Ay, — cuu? is positive semidefinite. Since cuu? is also positive semidefinite,
Ay is also positive semidefinite.

The Cauchy-Schwarz inequality is tight iff the vectors are parallel or anti-parallel. There-
fore, Ay 1 — cuu?’ = 0 <= Lw = aLy, for some o € R. Since L is invertible, this is
equivalent to w = a~y.

Assume Ay, is not positive definite. Jw € R? — {0}, w! Ay 1w = 0.

wTAkHw =0

= w! (Apy1 — cun”)w + w” (cuu)w = 0

— w (A4 — cunDw =0 A w” (cuv™w =0

= (am)" (cuu”)(ay) =0

= ca®(70,)? =0 (u = &)
— a*(6]Q6) =0 (7 = Qdy and 2)

This is not possible because 6} Qd; > 0 (because @ is positive definite) and o # 0 (because
w # 0). Therefore, we have a contradiction. Therefore, Ay is positive definite. m

Lemma 6 (Proof omitted (probably beyond scope of course)).

Vk > 1,Vi € [0,k —1], Ayyi = 6 A6} Q6 = 0

Let A = {dg,01,...}. Lemma 6 states that A is Q-conjugate. This implies that A is
linearly independent. By lemma 3, we get that rank-2 updates converge to minimum in
d + 1 iterations.

4 BFGS

Instead of modeling the change in hessian’s inverse, we’ll now model the change in the
hessian. But we need to do it in a way such that the change in the inverse is also easy to
compute.

Let By be an approximation to the hessian and Aj be an approximation to the inverse
of the hessian. Then v, = Byy10; and 0 = Ap 17

We'll chose the update rule as

By = By + cuu® + bvoT



This will make sure that By is symmetric implies By is symmetric.

Applying the Quasi-Newton condition, we get
Ve = Bk+1§k = Vi — Bkdk = (cuTék)u + (bUT(Sk)U

Let u = v, and v = Byd.

1 1 d —1 —1
C= ——— = = —_=
UT(Sk ’ykT(Sk UT5k 5£Bk(5k
r Byort B

Similar to theorem 5, we can prove that By is positive definite for quadratic functions.
This implies that Ag,; is also symmetric and positive definite for quadratic functions.
To invert Bjy.1, we'll use the Sherman-Morrison formula.

Theorem 7 (Sherman-Morrison formula). Let A be an invertible matriz. Then A+ uv”
is invertible iff 1 +vT A71u # 0. Also,
AT AT

TN-1 _ 4—1
(A+uw™ )" =A T oA Ty

Applying the formula twice, we get

OkOF (1 n %zAWk,) _Andp 4 0l A
O T OF Vi 0% Vi

App1 = A +

5 Broyden Family

Let’s explore this update rule:

0k, N CAWWEAIC B bAwk(S;;F + 0 A

A1 = A +a
’ 0Tk e A O Yk

Applying the Quasi-Newton condition, we get

71? Ak e
513%

Ok — Axye = (a —b > O + (¢ — b) Ap i

Equating coefficients of §; and ~;, we get

71? AV

c=b-1
5/?%

a=1+b

On rearranging, we get

ooy Ay Ak
v WA

Apyr = <Ak + ) + b(y Ay )wrwy



where

_ o A
5;{% ’YkTAk’Yk

w

This update rule is called the Broyden Family. Note that the first term is the same as
the rank-2 update.

Define the following 2 functions:

56T AT A
rank-2(A,d,v) = A+ 5Ty T T Ay
56T v Ay AvoT + 57T A
fgs(A =A+_— 1 -

The Broyden family can also be rewritten as

Apy1 = (1 — b) rank-2( Ay, 0x, 1) + bbigs(Ag, ok, i)



	1 Quasi-Newton method template
	2 Rank-1 update
	2.1 Analysis for quadratic function
	2.2 Unresolved questions

	3 Rank-2 update
	3.1 Analysis for quadratic function

	4 BFGS
	5 Broyden Family

