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1 Quasi-Newton method template

Newton’s method’s update rule:

xk+1 = xk − H−1
f (xk)∇f (xk)

This method is not useful, because it requires inverting the hessian, which can be pro-
hibitively computationally expensive for high-dimensional data.

We will therefore try to model the change in the hessian’s inverse, and approximate the
hessian’s inverse instead of calculating it exactly.

Let gk = ∇f (xk), δk = xk+1 − xk and γk = gk+1 − gk.

∇f (xk+1) ≈ ∇f (xk) + Hf (xk)(xk+1 − xk) (by differentiating Taylor series)

=⇒ δk ≈ H−1
f (xk)γk

This inspires us to use an update rule of this form:

xk+1 = xk − Akgk

and apply the following constraint on Ak:

δk = Ak+1γk (1)

This constraint is called the ‘Quasi-Newton condition’.

Also, we must ensure that Ak is symmetric and positive (semi)definite.
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Note that the Quasi-Newton condition is d equations, whereas there are d2 entries in Ak.
We therefore have a lot of slack in terms of how to update Ak.

In all Quasi-Newton methods described next, we choose A0 as any matrix which is sym-
metric and positive (semi)definite. Generally, the identity matrix is used. Then we use
Ak, δk and γk to obtain Ak+1 via an update rule, like ‘rank-1 update’, ‘rank-2 update’ or
‘BFGS’.

2 Rank-1 update

Here we impose a condition of the form Ak+1 = Ak + cuuT , where c ∈ R and u ∈ Rd

(Note that rank(uuT ) = 1).

It’s easy to see that Ak+1 is symmetric for all c and positive definite for c ≥ 0.

To get concrete values of c and u, we’ll plug the rank-1 update condition into the Quasi-
Newton condition (1).

δk = (Ak + cuuT )γk =⇒ (cuTγk)u = δk − Akγk

Therefore, u is parallel to δk − Akγk. Let u = δk − Akγk. Then

u = (cuTγk)u =⇒ cuTγk = 1 =⇒ c =
1

uTγk
=

1

δTk γk − γT
k Akγk

With these specific values of u and c, the rank-1 update condition will satisfy all required
conditions (symmetry, positive definiteness and Quasi-Newton condition) if c ≥ 0.

Unfortunately, it has not yet been proved or disproved whether c ≥ 0.

2.1 Analysis for quadratic function

Let f(x) = 1
2
xTQx − bTx, where Q is symmetric and positive definite. Then ∇f (x) =

Qx− b =⇒ γk = Qδk.

Lemma 1.

∀i ∈ [0, k], Ak+1γi = δi

Proof by induction on k.

P (l) : ∀i ∈ [0, l − 1], Alγi = δi

We have to prove P (l) for all l ≥ 1.

Base case: Since A1 was constructed to follow the Quasi-Newton condition, δ0 =
A1γ0 =⇒ P (1).

Inductive step: Assume P (l) is true. We’ll prove P (l + 1).
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Let i ∈ [0, l − 1].

Al+1γi =

(
Al +

uuT

uTγl

)
γi (here u = δl − Alγl)

= δi +
uTγi
uTγl

u (Alγi = δi by induction hypothesis)

uTγi = (δl − Alγl)
Tγi

= δTl γi − γT
l Alγi

= δTl γi − γT
l δi (by induction hypothesis)

= δTl Qδi − δTl Qδi (∀j, γj = Qδj)

= 0

Therefore, Al+1γi = δi for all i ∈ [0, l − 1]. Since Al+1 was constructed to follow the
Quasi-Newton condition, Al+1γl = δl. Therefore, P (l + 1) holds true.

Lemma 2. If all δi were orthonormal, then Ad = Q−1.

Proof. By lemma 1,

∀i ∈ [0, d− 1], δi = Adγi = AdQδi

Therefore, (1, δi) is an eigenpair for AdQ.

Let P be the matrix whose ith columns is δi. P exists because real symmetric matrices
are orthogonally diagonalizable and AdQ is real and symmetric. Then AdQ = PIP T =
I =⇒ Ad = Q−1.

Lemma 3. If all δi are linearly independent, then Ad = Q−1.

Proof. Let ∆ = {δ0, . . . , δd−1}. Since ∆ ⊆ Rd, |∆| = d = dim(Rd) and ∆ is linearly
independent, ∆ is a basis of Rd.

Let x ∈ Rd. Let x =
∑d−1

i=0 ciδi. Then

AdQx =
d−1∑
i=0

AdQ(ciδi) =
d−1∑
i=0

ci(Adγi) =
d−1∑
i=0

ciδi = x

Therefore, ∀x ∈ Rd, (AdQ)x = x, so AdQ = I.

Note that the proof is not specific to rank-1 updates. Its correctness relies only on the
Quasi-Newton condition and f being quadratic.

Since Ad = Q−1, the (d + 1)th iteration would be identical to Newton’s method. So the
rank-1 update method will converge to the minimum in at most d+ 1 iterations.

2.2 Unresolved questions

• Ak is positive definite when c ≥ 0. Is c ≥ 0?

• Is {δ0, δ1, . . .} linearly independent?
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3 Rank-2 update

Ak+1 = Ak + cuuT + bvvT

It’s easy to see that Ak+1 is symmetric iff Ak is symmetric.

By Quasi-Newton condition, we get

δk = Ak+1γk =⇒ (cuTγk)u+ (bvTγk)v = δk − Akγk

Let u = δk and v = Akγk. Then

c =
1

uTγk
=

1

δTk γk
b =

−1

vTγk
=

−1

γT
k Akγk

Ak+1 = Ak +
δkδ

T
k

δTk γk
− Akγkγ

T
k Ak

γT
k Akγk

3.1 Analysis for quadratic function

Let f(x) = 1
2
xTQx− bTx. Then γk = Qδk.

Lemma 4 (Symmetric square root of a matrix). If A is a symmetric and positive definite
matrix, then ∃L such that A = L2 and L is symmetric, positive semidefinite and invertible.

Proof. Since A is real and symmetric, it is orthogonally diagonalizable. So there is a
matrix P and a diagonal matrix D such that A = PDP T and PP T = P TP = I. Since
A is positive definite, all diagonal entries of D are positive. Therefore,

√
D exists. Also,

all entries of
√
D are positive, so

√
D

−1
exists. Let L = P

√
DP T . Then L is symmetric

and L2 = A.

uTLu = uT (P
√
DP T )u = (P Tu)T

√
D(P Tu) ≥ 0

Therefore, L is also positive semidefinite. Also,

L(P
√
D

−1
P T ) = P

√
DP TP

√
D

−1
P T = I

Therefore, L−1 = P
√
D

−1
P T .

Theorem 5. Let Ak be symmetric and positive definite. Then Ak+1 is positive definite.

Proof.

c =
1

δTk γk
=

1

δTk Qδk
> 0 (2)

We’ll now prove that Ak+1 − cuuT is positive semidefinite. Let w ∈ Rd − {0}.

wT (Ak+1 − cuuT )w

= wT (Ak + bvvT )w

= wTAkw − (wTAkγk)
2

γT
k Akγk
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Since Ak is symmetric and positive definite, it has a symmetric and invertible square root
L.

wT (Ak+1 − cuuT )w

= wTLTLw − (wTLTLγk)
2

γT
k L

TLγk

= ∥Lw∥2 − ((Lw)T (Lγk))
2

∥Lγk∥2

≥ 0 (by Cauchy-Schwarz inequality)

Therefore, Ak+1 − cuuT is positive semidefinite. Since cuuT is also positive semidefinite,
Ak+1 is also positive semidefinite.

The Cauchy-Schwarz inequality is tight iff the vectors are parallel or anti-parallel. There-
fore, Ak+1 − cuuT = 0 ⇐⇒ Lw = αLγk for some α ∈ R. Since L is invertible, this is
equivalent to w = αγk.

Assume Ak+1 is not positive definite. ∃w ∈ Rd − {0}, wTAk+1w = 0.

wTAk+1w = 0

=⇒ wT (Ak+1 − cuuT )w + wT (cuuT )w = 0

=⇒ wT (Ak+1 − cuuT )w = 0 ∧ wT (cuuT )w = 0

=⇒ (αγk)
T (cuuT )(αγk) = 0

=⇒ cα2(γT
k δk)

2 = 0 (u = δk)

=⇒ α2(δTk Qδk) = 0 (γk = Qδk and 2)

This is not possible because δTk Qδk > 0 (becauseQ is positive definite) and α ̸= 0 (because
w ̸= 0). Therefore, we have a contradiction. Therefore, Ak+1 is positive definite.

Lemma 6 (Proof omitted (probably beyond scope of course)).

∀k ≥ 1, ∀i ∈ [0, k − 1], Akγi = δi ∧ δTk Qδi = 0

Let ∆ = {δ0, δ1, . . .}. Lemma 6 states that ∆ is Q-conjugate. This implies that ∆ is
linearly independent. By lemma 3, we get that rank-2 updates converge to minimum in
d+ 1 iterations.

4 BFGS

Instead of modeling the change in hessian’s inverse, we’ll now model the change in the
hessian. But we need to do it in a way such that the change in the inverse is also easy to
compute.

Let Bk be an approximation to the hessian and Ak be an approximation to the inverse
of the hessian. Then γk = Bk+1δk and δk = Ak+1γk.

We’ll chose the update rule as

Bk+1 = Bk + cuuT + bvvT
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This will make sure that Bk is symmetric implies Bk+1 is symmetric.

Applying the Quasi-Newton condition, we get

γk = Bk+1δk =⇒ γk −Bkδk = (cuT δk)u+ (bvT δk)v

Let u = γk and v = Bkδk.

c =
1

uT δk
=

1

γT
k δk

d =
−1

vT δk
=

−1

δTk Bkδk

Bk+1 = Bk +
γT
k γk
γT
k δk

− Bkδkδ
T
k Bk

δTk Bkδk

Similar to theorem 5, we can prove that Bk+1 is positive definite for quadratic functions.
This implies that Ak+1 is also symmetric and positive definite for quadratic functions.

To invert Bk+1, we’ll use the Sherman-Morrison formula.

Theorem 7 (Sherman-Morrison formula). Let A be an invertible matrix. Then A+ uvT

is invertible iff 1 + vTA−1u ̸= 0. Also,

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u

Applying the formula twice, we get

Ak+1 = Ak +
δkδ

T
k

δTk γk

(
1 +

γT
k Akγk
δTk γk

)
− Akγkδ

T
k + δkγ

T
k Ak

δTk γk

5 Broyden Family

Let’s explore this update rule:

Ak+1 = Ak + a
δkδ

T
k

δTγk
+ c

Akγkγ
T
k Ak

γT
k Aγk

− b
Akγkδ

T
k + δkγ

T
k Ak

δTk γk

Applying the Quasi-Newton condition, we get

δk − Akγk =

(
a− b

γT
k Akγk
δTk γk

)
δk + (c− b)Akγk

Equating coefficients of δk and γk, we get

a = 1 + b
γT
k Akγk
δTk γk

c = b− 1

On rearranging, we get

Ak+1 =

(
Ak +

δkδ
T
k

δTk γk
− Akγkγ

T
k Ak

γT
k Akγk

)
+ b(γT

k Akγk)wkw
T
k
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where

w =
δk

δTk γk
− Akγk

γT
k Akγk

This update rule is called the Broyden Family. Note that the first term is the same as
the rank-2 update.

Define the following 2 functions:

rank-2(A, δ, γ) = A+
δδT

δTγ
− AγγTA

γTAγ

bfgs(A, δ, γ) = A+
δδT

δTγ

(
1 +

γTAγ

δTγ

)
− AγδT + δγTA

δTγ

The Broyden family can also be rewritten as

Ak+1 = (1− b) rank-2(Ak, δk, γk) + b bfgs(Ak, δk, γk)
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