CMO: Quasi-Newton Methods

Eklavya Sharma

Contents

1	Quasi-Newton method template	1
2	Rank-1 update	2
	2.1 Analysis for quadratic function	2
	2.2 Unresolved questions	3
3	Rank-2 update	4
	3.1 Analysis for quadratic function	4
4	BFGS	5
5	Broyden Family	6

1 Quasi-Newton method template

Newton's method's update rule:

 $x_{k+1} = x_k - \operatorname{H}_f^{-1}(x_k) \,\nabla_f(x_k)$

This method is not useful, because it requires inverting the hessian, which can be prohibitively computationally expensive for high-dimensional data.

We will therefore try to model the change in the hessian's inverse, and approximate the hessian's inverse instead of calculating it exactly.

Let $g_k = \nabla_f(x_k)$, $\delta_k = x_{k+1} - x_k$ and $\gamma_k = g_{k+1} - g_k$.

$$\nabla_f(x_{k+1}) \approx \nabla_f(x_k) + \mathcal{H}_f(x_k)(x_{k+1} - x_k) \qquad \text{(by differentiating Taylor series)}$$
$$\implies \delta_k \approx \mathcal{H}_f^{-1}(x_k)\gamma_k$$

This inspires us to use an update rule of this form:

$$x_{k+1} = x_k - A_k g_k$$

and apply the following constraint on A_k :

$$\delta_k = A_{k+1}\gamma_k \tag{1}$$

This constraint is called the 'Quasi-Newton condition'.

Also, we must ensure that A_k is symmetric and positive (semi)definite.

Note that the Quasi-Newton condition is d equations, whereas there are d^2 entries in A_k . We therefore have a lot of slack in terms of how to update A_k .

In all Quasi-Newton methods described next, we choose A_0 as any matrix which is symmetric and positive (semi)definite. Generally, the identity matrix is used. Then we use A_k , δ_k and γ_k to obtain A_{k+1} via an update rule, like 'rank-1 update', 'rank-2 update' or 'BFGS'.

2 Rank-1 update

Here we impose a condition of the form $A_{k+1} = A_k + cuu^T$, where $c \in \mathbb{R}$ and $u \in \mathbb{R}^d$ (Note that rank $(uu^T) = 1$).

It's easy to see that A_{k+1} is symmetric for all c and positive definite for $c \ge 0$.

To get concrete values of c and u, we'll plug the rank-1 update condition into the Quasi-Newton condition (1).

$$\delta_k = (A_k + cuu^T)\gamma_k \implies (cu^T\gamma_k)u = \delta_k - A_k\gamma_k$$

Therefore, u is parallel to $\delta_k - A_k \gamma_k$. Let $u = \delta_k - A_k \gamma_k$. Then

$$u = (cu^T \gamma_k) u \implies cu^T \gamma_k = 1 \implies c = \frac{1}{u^T \gamma_k} = \frac{1}{\delta_k^T \gamma_k - \gamma_k^T A_k \gamma_k}$$

With these specific values of u and c, the rank-1 update condition will satisfy all required conditions (symmetry, positive definiteness and Quasi-Newton condition) if $c \ge 0$.

Unfortunately, it has not yet been proved or disproved whether $c \ge 0$.

2.1 Analysis for quadratic function

Let $f(x) = \frac{1}{2}x^TQx - b^Tx$, where Q is symmetric and positive definite. Then $\nabla_f(x) = Qx - b \implies \gamma_k = Q\delta_k$.

Lemma 1.

 $\forall i \in [0,k], A_{k+1}\gamma_i = \delta_i$

Proof by induction on k.

 $P(l): \forall i \in [0, l-1], A_l \gamma_i = \delta_i$

We have to prove P(l) for all $l \ge 1$.

Base case: Since A_1 was constructed to follow the Quasi-Newton condition, $\delta_0 = A_1 \gamma_0 \implies P(1)$.

Inductive step: Assume P(l) is true. We'll prove P(l+1).

Let
$$i \in [0, l-1]$$
.

$$A_{l+1}\gamma_i = \left(A_l + \frac{uu^T}{u^T\gamma_l}\right)\gamma_i \qquad (here \ u = \delta_l - A_l\gamma_l)$$

$$= \delta_i + \frac{u^T\gamma_i}{u^T\gamma_l}u \qquad (A_l\gamma_i = \delta_i \text{ by induction hypothesis})$$

$$u^T\gamma_i = (\delta_l - A_l\gamma_l)^T\gamma_i$$

$$= \delta_l^T\gamma_i - \gamma_l^TA_l\gamma_i$$

$$= \delta_l^T\gamma_i - \gamma_l^T\delta_i \qquad (by induction hypothesis)$$

$$= \delta_l^TQ\delta_i - \delta_l^TQ\delta_i \qquad (\forall j, \gamma_j = Q\delta_j)$$

$$= 0$$

Therefore, $A_{l+1}\gamma_i = \delta_i$ for all $i \in [0, l-1]$. Since A_{l+1} was constructed to follow the Quasi-Newton condition, $A_{l+1}\gamma_l = \delta_l$. Therefore, P(l+1) holds true.

Lemma 2. If all δ_i were orthonormal, then $A_d = Q^{-1}$.

Proof. By lemma 1,

$$\forall i \in [0, d-1], \delta_i = A_d \gamma_i = A_d Q \delta_i$$

Therefore, $(1, \delta_i)$ is an eigenpair for $A_d Q$.

Let P be the matrix whose i^{th} columns is δ_i . P exists because real symmetric matrices are orthogonally diagonalizable and A_dQ is real and symmetric. Then $A_dQ = PIP^T = I \implies A_d = Q^{-1}$.

Lemma 3. If all δ_i are linearly independent, then $A_d = Q^{-1}$.

Proof. Let $\Delta = \{\delta_0, \ldots, \delta_{d-1}\}$. Since $\Delta \subseteq \mathbb{R}^d$, $|\Delta| = d = \dim(\mathbb{R}^d)$ and Δ is linearly independent, Δ is a basis of \mathbb{R}^d .

Let $x \in \mathbb{R}^d$. Let $x = \sum_{i=0}^{d-1} c_i \delta_i$. Then

$$A_d Q x = \sum_{i=0}^{d-1} A_d Q(c_i \delta_i) = \sum_{i=0}^{d-1} c_i (A_d \gamma_i) = \sum_{i=0}^{d-1} c_i \delta_i = x$$

Therefore, $\forall x \in \mathbb{R}^d$, $(A_d Q)x = x$, so $A_d Q = I$.

Note that the proof is not specific to rank-1 updates. Its correctness relies only on the Quasi-Newton condition and f being quadratic.

Since $A_d = Q^{-1}$, the $(d+1)^{\text{th}}$ iteration would be identical to Newton's method. So the rank-1 update method will converge to the minimum in at most d+1 iterations.

2.2 Unresolved questions

- A_k is positive definite when $c \ge 0$. Is $c \ge 0$?
- Is $\{\delta_0, \delta_1, \ldots\}$ linearly independent?

3 Rank-2 update

 $A_{k+1} = A_k + cuu^T + bvv^T$

It's easy to see that A_{k+1} is symmetric iff A_k is symmetric.

By Quasi-Newton condition, we get

$$\delta_k = A_{k+1}\gamma_k \implies (cu^T\gamma_k)u + (bv^T\gamma_k)v = \delta_k - A_k\gamma_k$$

Let $u = \delta_k$ and $v = A_k \gamma_k$. Then

$$c = \frac{1}{u^T \gamma_k} = \frac{1}{\delta_k^T \gamma_k} \qquad \qquad b = \frac{-1}{v^T \gamma_k} = \frac{-1}{\gamma_k^T A_k \gamma_k}$$
$$A_{k+1} = A_k + \frac{\delta_k \delta_k^T}{\delta_k^T \gamma_k} - \frac{A_k \gamma_k \gamma_k^T A_k}{\gamma_k^T A_k \gamma_k}$$

3.1 Analysis for quadratic function

Let $f(x) = \frac{1}{2}x^TQx - b^Tx$. Then $\gamma_k = Q\delta_k$.

Lemma 4 (Symmetric square root of a matrix). If A is a symmetric and positive definite matrix, then $\exists L$ such that $A = L^2$ and L is symmetric, positive semidefinite and invertible.

Proof. Since A is real and symmetric, it is orthogonally diagonalizable. So there is a matrix P and a diagonal matrix D such that $A = PDP^T$ and $PP^T = P^TP = I$. Since A is positive definite, all diagonal entries of D are positive. Therefore, \sqrt{D} exists. Also, all entries of \sqrt{D} are positive, so \sqrt{D}^{-1} exists. Let $L = P\sqrt{D}P^T$. Then L is symmetric and $L^2 = A$.

$$u^T L^u = u^T (P\sqrt{D}P^T)u = (P^T u)^T \sqrt{D}(P^T u) \ge 0$$

Therefore, L is also positive semidefinite. Also,

$$L(P\sqrt{D}^{-1}P^T) = P\sqrt{D}P^T P\sqrt{D}^{-1}P^T = I$$

Therefore, $L^{-1} = P\sqrt{D}^{-1}P^T$.

Theorem 5. Let A_k be symmetric and positive definite. Then A_{k+1} is positive definite.

Proof.

$$c = \frac{1}{\delta_k^T \gamma_k} = \frac{1}{\delta_k^T Q \delta_k} > 0 \tag{2}$$

We'll now prove that $A_{k+1} - cuu^T$ is positive semidefinite. Let $w \in \mathbb{R}^d - \{0\}$.

$$w^{T}(A_{k+1} - cuu^{T})w$$

= $w^{T}(A_{k} + bvv^{T})w$
= $w^{T}A_{k}w - \frac{(w^{T}A_{k}\gamma_{k})^{2}}{\gamma_{k}^{T}A_{k}\gamma_{k}}$

Since A_k is symmetric and positive definite, it has a symmetric and invertible square root L.

$$w^{T}(A_{k+1} - cuu^{T})w$$

$$= w^{T}L^{T}Lw - \frac{(w^{T}L^{T}L\gamma_{k})^{2}}{\gamma_{k}^{T}L^{T}L\gamma_{k}}$$

$$= \|Lw\|^{2} - \frac{((Lw)^{T}(L\gamma_{k}))^{2}}{\|L\gamma_{k}\|^{2}}$$

$$\geq 0 \qquad (by Cauchy-Schwarz inequality)$$

Therefore, $A_{k+1} - cuu^T$ is positive semidefinite. Since cuu^T is also positive semidefinite, A_{k+1} is also positive semidefinite.

The Cauchy-Schwarz inequality is tight iff the vectors are parallel or anti-parallel. Therefore, $A_{k+1} - cuu^T = 0 \iff Lw = \alpha L\gamma_k$ for some $\alpha \in \mathbb{R}$. Since L is invertible, this is equivalent to $w = \alpha \gamma_k$.

Assume A_{k+1} is not positive definite. $\exists w \in \mathbb{R}^d - \{0\}, w^T A_{k+1} w = 0.$

$$w^{T}A_{k+1}w = 0$$

$$\implies w^{T}(A_{k+1} - cuu^{T})w + w^{T}(cuu^{T})w = 0$$

$$\implies w^{T}(A_{k+1} - cuu^{T})w = 0 \land w^{T}(cuu^{T})w = 0$$

$$\implies (\alpha\gamma_{k})^{T}(cuu^{T})(\alpha\gamma_{k}) = 0$$

$$\implies c\alpha^{2}(\gamma_{k}^{T}\delta_{k})^{2} = 0 \qquad (u = \delta_{k})$$

$$\implies \alpha^{2}(\delta_{k}^{T}Q\delta_{k}) = 0 \qquad (\gamma_{k} = Q\delta_{k} \text{ and } 2)$$

This is not possible because $\delta_k^T Q \delta_k > 0$ (because Q is positive definite) and $\alpha \neq 0$ (because $w \neq 0$). Therefore, we have a contradiction. Therefore, A_{k+1} is positive definite. \Box

Lemma 6 (Proof omitted (probably beyond scope of course)).

$$\forall k \geq 1, \forall i \in [0, k-1], A_k \gamma_i = \delta_i \wedge \delta_k^T Q \delta_i = 0$$

Let $\Delta = \{\delta_0, \delta_1, \ldots\}$. Lemma 6 states that Δ is *Q*-conjugate. This implies that Δ is linearly independent. By lemma 3, we get that rank-2 updates converge to minimum in d+1 iterations.

4 BFGS

Instead of modeling the change in hessian's inverse, we'll now model the change in the hessian. But we need to do it in a way such that the change in the inverse is also easy to compute.

Let B_k be an approximation to the hessian and A_k be an approximation to the inverse of the hessian. Then $\gamma_k = B_{k+1}\delta_k$ and $\delta_k = A_{k+1}\gamma_k$.

We'll chose the update rule as

$$B_{k+1} = B_k + cuu^T + bvv^T$$

This will make sure that B_k is symmetric implies B_{k+1} is symmetric.

Applying the Quasi-Newton condition, we get

$$\gamma_k = B_{k+1}\delta_k \implies \gamma_k - B_k\delta_k = (cu^T\delta_k)u + (bv^T\delta_k)v$$

Let $u = \gamma_k$ and $v = B_k \delta_k$.

$$c = \frac{1}{u^T \delta_k} = \frac{1}{\gamma_k^T \delta_k} \qquad \qquad d = \frac{-1}{v^T \delta_k} = \frac{-1}{\delta_k^T B_k \delta_k}$$
$$B_{k+1} = B_k + \frac{\gamma_k^T \gamma_k}{\gamma_k^T \delta_k} - \frac{B_k \delta_k \delta_k^T B_k}{\delta_k^T B_k \delta_k}$$

Similar to theorem 5, we can prove that B_{k+1} is positive definite for quadratic functions. This implies that A_{k+1} is also symmetric and positive definite for quadratic functions.

To invert B_{k+1} , we'll use the Sherman-Morrison formula.

Theorem 7 (Sherman-Morrison formula). Let A be an invertible matrix. Then $A + uv^T$ is invertible iff $1 + v^T A^{-1}u \neq 0$. Also,

$$(A + uv^{T})^{-1} = A^{-1} - \frac{A^{-1}uv^{T}A^{-1}}{1 + v^{T}A^{-1}u}$$

Applying the formula twice, we get

$$A_{k+1} = A_k + \frac{\delta_k \delta_k^T}{\delta_k^T \gamma_k} \left(1 + \frac{\gamma_k^T A_k \gamma_k}{\delta_k^T \gamma_k} \right) - \frac{A_k \gamma_k \delta_k^T + \delta_k \gamma_k^T A_k}{\delta_k^T \gamma_k}$$

5 Broyden Family

Let's explore this update rule:

$$A_{k+1} = A_k + a \frac{\delta_k \delta_k^T}{\delta^T \gamma_k} + c \frac{A_k \gamma_k \gamma_k^T A_k}{\gamma_k^T A \gamma_k} - b \frac{A_k \gamma_k \delta_k^T + \delta_k \gamma_k^T A_k}{\delta_k^T \gamma_k}$$

Applying the Quasi-Newton condition, we get

$$\delta_k - A_k \gamma_k = \left(a - b \frac{\gamma_k^T A_k \gamma_k}{\delta_k^T \gamma_k}\right) \delta_k + (c - b) A_k \gamma_k$$

Equating coefficients of δ_k and γ_k , we get

$$a = 1 + b \frac{\gamma_k^T A_k \gamma_k}{\delta_k^T \gamma_k} \qquad \qquad c = b - 1$$

On rearranging, we get

$$A_{k+1} = \left(A_k + \frac{\delta_k \delta_k^T}{\delta_k^T \gamma_k} - \frac{A_k \gamma_k \gamma_k^T A_k}{\gamma_k^T A_k \gamma_k}\right) + b(\gamma_k^T A_k \gamma_k) w_k w_k^T$$

where

$$w = \frac{\delta_k}{\delta_k^T \gamma_k} - \frac{A_k \gamma_k}{\gamma_k^T A_k \gamma_k}$$

This update rule is called the Broyden Family. Note that the first term is the same as the rank-2 update.

Define the following 2 functions:

rank-2(A,
$$\delta, \gamma$$
) = A + $\frac{\delta\delta^T}{\delta^T\gamma} - \frac{A\gamma\gamma^T A}{\gamma^T A\gamma}$
bfgs(A, δ, γ) = A + $\frac{\delta\delta^T}{\delta^T\gamma} \left(1 + \frac{\gamma^T A\gamma}{\delta^T\gamma}\right) - \frac{A\gamma\delta^T + \delta\gamma^T A}{\delta^T\gamma}$

The Broyden family can also be rewritten as

$$A_{k+1} = (1-b) \operatorname{rank-2}(A_k, \delta_k, \gamma_k) + b \operatorname{bfgs}(A_k, \delta_k, \gamma_k)$$