
CMO: Conjugate Descent

Eklavya Sharma

Objective: Minimize f(x) = 1
2
xTQx− bTx, where Q is symmetric and positive definite.
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1 Q-conjugate vectors

Definition 1. A set of d-dimensional non-0 vectors U = {u0, u1, . . . , uk−1} is Q-conjugate
iff ∀i ̸= j, uT

i Quj = 0.

Theorem 1. If U = {u0, . . . , ud−1} is Q-conjugate, then U is a basis of Rd.

Proof. Assume U is linearly dependent. Then one of the vectors in U can be represented
as a linear combination of the other (proof). Without loss of generality, assume ud−1 =∑d−2

i=0 αiui.

∀i ̸= d− 1,

0 = uT
i Qud−1 = uT

i Q

(
d−2∑
j=0

αjuj

)
=

d−2∑
j=0

αju
T
i Quj = αiu

T
i Qui =⇒ αi = 0

Hence, ud−1 = 0 ⇒ ⊥.

On assuming U to be linearly dependent, we got a contradiction. Therefore, U is linearly
independent.

Since |U | = d = dim(Rd), U is a basis of Rd (proof).

Since Q is positive definite, uT
i Qui > 0 for all i.

1

https://sharmaeklavya2.github.io/theoremdep/nodes/linear-algebra/vector-spaces/linindep.html
https://sharmaeklavya2.github.io/theoremdep/nodes/linear-algebra/vector-spaces/basis/n-linindep-is-basis.html


2 Descent algorithm using Q-conjugate vectors

We’ll develop a descent algorithm which uses uk in the kth iteration with exact line search.
The name of this algorithm will be ‘Conjugate Gradient Algorithm’.

Let g(α) = f(xk + αuk) and gk = ∇f (xk)
T (sorry for overloading variables; the subscript

will help distinguish them though). Therefore, g′(0) = ∇f (xk) = gk and g′′(0) = uT
kQuk.

By univariate Taylor series, we get

g(α) = g(0) + αg′(0) +
α2

2
g′′(0)

Let α∗
k = argminα f(xk + αuk). Therefore,

α∗
k = − g′(0)

g′′(0)
= − gTk uk

uT
kQuk

We’ll choose xk+1 = xk + α∗
kuk. Therefore, xk = x0 +

∑k−1
i=0 α

∗
iui.

3 Proof of convergence

Theorem 2.

uT
j gk =

{
0 if j < k

uT
j g0 if j ≥ k

Proof.

gk = ∇f (xk) = Qxk − b

= Q

(
x0 +

k−1∑
i=0

α∗
iui

)
− b

= (Qx0 − b) +
k−1∑
i=0

α∗
iQui

= g0 +
k−1∑
i=0

α∗
iQui
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uT
j gk = uT

j

(
g0 +

k−1∑
i=0

α∗
iQui

)

= uT
j g0 +

k−1∑
i=0

α∗
iu

T
j Qui

= uT
j g0 +

k−1∑
i=0

α∗
i

{
uT
j Quj i = j
0 i ̸= j

}
= uT

j g0 +

{
α∗
ju

T
j Quj j < k
0 j ≥ k

}
= uT

j g0 −
{
uT
j gj j < k
0 j ≥ k

}
When j = k, we get uT

k gk = uT
k g0. Therefore,

uT
j gk = uT

j g0 −
{
uT
j gj j < k
0 j ≥ k

}
= uT

j g0 −
{
uT
j g0 j < k
0 j ≥ k

}
=

{
0 j < k

uT
j g0 j ≥ k

}

Corollary 2.1. gd = 0. This means that the conjugate descent algorithm converges in d
iterations.

Proof. By the previous theorem (2), ∀0 ≤ j ≤ d−1, uT
j gd = 0. Since U = {u0, u1, . . . , ud−1}

forms a basis of Rd, we get that ∀x ∈ Rd, xTgd = 0. Therefore, gTd gd = 0 =⇒ gd = 0.

We’ll now look at an alternative way of proving convergence which will give us more
insight.

Let Bk = {x0 +
∑k−1

i=0 βiui : βi ∈ R}. Since U is a basis of Rd, Bd = Rd. Therefore, to
prove convergence of this algorithm, we’ll prove the following theorem.

Theorem 3 (Expanding subspace theorem). ∀k, xk = argminx∈Bk
f(x).

xk = x0 +
∑k−1

i=0 α
∗
iui. Let α∗ = [α∗

0, . . . , α
∗
k−1]. Let h(β) = f(x0 +

∑k−1
i=0 βiui). Then

minx∈Bk
f(x) = minβ∈Rk h(β). Since h(α∗) = f(xk), if we prove that α

∗ = argminβ∈Rk h(β),
then xk = argminx∈Bk

f(x).

Lemma 4. h(β) is a convex function.

Proof. Let U = [u0, u1, . . . , uk−1] be a d by k matrix. Then

(Uβ)j =
k−1∑
i=0

U [j, i]βi =
k−1∑
i=0

(ui)jβi =

(
k−1∑
i=0

uiβi

)
j
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=⇒ h(β) = f

(
x0 +

k−1∑
i=0

βiui

)
= f(x0 + Uβ)

h(β) = f(x0 + Uβ)

= f(x0) +∇f (x0)
T (Uβ) +

1

2
(Uβ)TQ(Uβ) (by Taylor series)

= f(x0) + (∇f (x0)
TU)β +

1

2
βT (UTQU)β

This is a quadratic function in β. It is convex iff UTQU is positive definite.

By the rules for multiplying stacked matrices, we get that (UTQU)i,j = uT
i Quj. Since

vectors in U are Q-conjugate, uT
i Quj = 0 when i ̸= j. Therefore, UTQU is a diagonal

matrix. Also, ∀i, uT
i Qui > 0 because Q is positive definite. Therefore, all diagonal entries

of UTQU are positive. Therefore, UTQU is positive definite.

Since h(β) is convex, ∇h(β) = 0 is a necessary and sufficient condition for minimum.

For all j ∈ [0, k − 1]

h(β)j =
∂f(x0 +

∑k−1
i=0 βiui)

∂βj

= uT
j ∇f

(
x0 +

k−1∑
i=0

βiui

)

h(α∗)j = uT
j ∇f

(
x0 +

k−1∑
i=0

α∗
iui

)
= uT

j ∇f (xk) = uT
j gk = 0 (by theorem 2)

Therefore, α∗ minimizes h, so xd minimizes f .

4 Rate of convergence

Unlike the previous algorithms, this algorithm:

• Converges exactly (instead of only ‘approaching’ the solution).

• Converges very fast – in exactly d steps.

5 Choosing Q-conjugate pairs

We will find U as follows: u0 = −g0 and uk+1 = −gk+1 + βkuk. We’ll choose βk such that
uT
kQuk+1 = 0.

0 = uT
kQuk+1 = −uT

kQgk+1 + βku
T
kQuk =⇒ βk =

uT
kQgk+1

uT
kQuk
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Algorithm 1 CGA(x0): Conjugate Gradient Algorithm for f(x) = 1
2
xTQx− bTx. Takes

starting point as input.

1: g0 = Qx0 − b
2: if g0 == 0 then
3: return x0

4: end if
5: u0 = −g0
6: for i ∈ [0,∞) do

7: αi =
−gTi ui

uT
i Qui

8: xi+1 = xi + αiui

9: gi+1 = Qxi+1 − b
10: if gi+1 == 0 then
11: return xi+1

12: end if

13: βi =
uT
i Qgi+1

uT
i Qui

14: ui+1 = −gi+1 + βiui

15: end for

Theorem 5. U is Q-conjugate.

Proof. Proof can be found in the lecture notes for the course ‘Optimization II - Numerical
Methods for Nonlinear Continuous Optimization’ by A. Nemirovski, in Theorem 5.4.1,
page 95.

Proof sketch. First induct on k to prove that for all k,

span({g0, g1, . . . , gk}) = span({g0, Qg0, . . . , Q
kg0}) = span({u0, u1, . . . , uk})

This can be done using the facts that gk+1 − gk = Q(xk+1 − xk) = αkQuk and that
vk+1 = −gk+1 + βkvk.

Then induct on k to prove that

∀k,∀i < k, uT
kQui = 0

To do this, express vk+1 as−gk+1+βkvk, writeQvi as a linear combination of {v0, v1, . . . , vi+1}
and carefully invoke theorem 2.

6 Faster convergence for structured eigenvalues

When the eigenvalues of Q have certain properties, we can guarantee faster convergence.

Bk+1 = x0 + span(u0, . . . , uk). Therefore, any vector x ∈ Bk+1 can be expressed as

x0 +
∑k

i=0 γiui. Since span(u0, . . . , uk) = span(g0, . . . , Q
kg0), x = x0 +

(∑k
i=0 δiQ

i
)
g0.

Let Polyk be the set of univariate polynomials of degree at most k where the coefficients
are from R and the variable is an n by n matrix over R. Therefore,

x ∈ Bk+1 =⇒
(
∃Pk ∈ Polyk, x = x0 + Pk(Q)g0

)
5
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x− x∗ = (x0 − x∗) + Pk(Q)g0 = (x0 − x∗) + Pk(Q)Q(x0 − x∗)

= (I +QPk(Q))(x0 − x∗)

Define E(x) = f(x)− f(x∗). By Taylor series,

E(x) =
1

2
(x− x∗)TQ(x− x∗)

=
1

2
(x0 − x∗)T (I +QPk(Q))TQ(I +QPk(Q))(x0 − x∗)

=
1

2
(x0 − x∗)TQ(I +QPk(Q))2(x0 − x∗)

Let R = {e1, e2, . . . , ed} be the set of orthonormal eigenvectors of Q. Let λ1 ≥ λ2 ≥
. . . ≥ λd be the corresponding eigenvalues. Since R forms a basis of Rd, x0 − x∗ can be
represented as a linear combination of R. Let x0 − x∗ =

∑d
i=1 ζiei = ζi.

Lemma 6. E(x0) =
1
2

∑d
i=1 ζ

2
i λi

Proof. Let R be a matrix whose ith column is ei. Since the eigenvectors are orthonormal,
RRT = RTR = I. Let ζ = [ζ1, . . . , ζd]

T . Then

Rζ =
d∑

i=1

ζiei = x0 − x∗

Since Q is symmetric, Q = RDRT , Where D is a diagonal matrix whose ith entry is λi.
Therefore,

2E(x0) = (x0 − x∗)TQ(x0 − x∗) = (Rζ)T (RDRT )(Rζ)

= ζT (RTR)D(RTR)ζ = ζTDζ =
d∑

i=1

ζ2i λi

Lemma 7 (Homework). Let T be a polynomial where T (X) = X(I +XPk(X))2. Then
E(x) = 1

2

∑d
i=1 ζ

2
i T (λi).

Hint. Use the fact that for all j ∈ N, R is also the set of eigenvectors of Qj and the
corresponding eigenvalues are λj

1, . . . , λ
j
d.

Lemma 8. For any polynomial Pk ∈ Polyk,

E(xk+1)

E(x0)
≤ d

max
i=0

(1 + λiPk(λi))
2
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Proof.

E(xk+1) = min
x∈Bk+1

E(x) (Expanding subspace theorem)

= min
Pk∈Polyk

1

2

d∑
i=1

ζ2i λi(1 + λiPk(λi))
2

≤ min
Pk∈Polyk

1

2

d∑
i=1

(
ζ2i λi

(
d

max
i=0

(1 + λiPk(λi))
2
))

= min
Pk∈Polyk

(
1

2

d∑
i=1

ζ2i λi

)(
d

max
i=0

(1 + λiPk(λi))
2
)

= E(x0) min
Pk∈Polyk

d
max
i=0

(1 + λiPk(λi))
2

Therefore, by cleverly choosing a polynomial, we can prove useful bounds on convergence.

6.1 Q has r distinct eigenvalues

Suppose Q has r distinct eigenvalues µ1 > µ2 > . . . > µr. Let P r(x) = 1 + xPr−1(x).

We’ll construct Pr−1 such that P r(x) = 0 for all 1 ≤ i ≤ r. This would mean that
E(xr)
E(x0)

= 0, so the conjugate gradient algorithm will converge in r iterations.

Define P r and Pr−1 as follows:

P r(x) =
r∏

j=1

(
1− x

µj

)
Pr−1(x) =

P r(x)− 1

x

Lemma 9. Pr−1 is a polynomial of degree r − 1 such that ∀0 ≤ i ≤ r, P r(µi) = 0.

Proof. Clearly, P r(µi) = 0 for all i. Also, the degree of P is r.

Next, we must prove that Pr−1 is a polynomial. Note that P r(0) = 1, so 0 is a root of
P r(x)− 1. Therefore, x is a factor of P r(x)− 1 and hence Pr−1 is a polynomial.

Since the degree of P r is r, the degree of Pr−1 is r − 1.

6.2 Theorem for a polynomial

In this section, we’ll prove a theorem for a certain polynomial which we’ll use in the next
section.

Theorem 10. Let n ≥ 2. Let 0 < a1 < a2 < . . . < an. Let p1, p2, . . . , pn be positive
integers and let p1 = 1.

f(x) =
n∏

i=1

(
1− x

ai

)pi

g(x) = f(x)− 1 +
x

a1

Then
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1. f is positive in (−∞, a1), negative in (a1, a2) and 0 at a1 and a2.

2. g(x) ≤ 0 for x ∈ [0, a1] and g(x) ≥ 0 for x ∈ [a1, a2].

Proof. Since a1 and a2 are zeros of f , f(a1) = f(a2) = 0. Since a1 is the leftmost zero of
f , f has the same sign in (−∞, a1) (by intermediate value theorem). Since f(0) = 1, f
is positive in (−∞, a1).

f ′(x)

f(x)
=

n∑
i=1

pi
x− ai

Let

h1(x) =
n∏

i=1

(x− ai)
pi−1

Then h1(x) divides f
′(x).

By Rolle’s theorem, there must be points b1 < b2 < . . . < bn−1 such that for all i,
f ′(bi) = 0 and bi ∈ (ai, ai+1). Let

h2(x) =
n−1∏
i=1

(x− bi)

So h2(x) divides f
′(x).

Let N =
∑n

i=1 pi. Then deg(f) = N . Also

deg(h1h2) = deg(h1) + deg(h2) = (N − n) + (n− 1) = N − 1 = deg(f ′)

Therefore, f ′(x) = γh1(x)h2(x) for some γ ∈ R.

Since p1 = 1, b1 is the leftmost zero of f ′ and it is the only zero in (−∞, a2). Therefore,
f ′(x) has the same sign for x ∈ (−∞, b1). Since f(0) = 1, f ′(0) = −

∑n
i=1

1
ai

< 0.
Therefore, f ′(x) < 0 for x ∈ (−∞, b1).

Since f(a1) = 0 and f ′(a1) < 0, f(a1 + ϵ) < 0 for all very small ϵ. Also, f has the
same sign in (a1, a2), otherwise it would have a root in (a1, a2), which we know is false.
Therefore, f(x) < 0 for x ∈ (a1, a2). This completes the proof of part 1 of this theorem.

Applying Rolle’s theorem to f ′(x) and by a similar argument (todo: expand this), we get
that f ′′(x) must have its leftmost root in (b1, a2). Therefore, f

′′(x) has the same sign in
(−∞, b1].

f ′′(x)

f(x)
=

(
n∑

i=1

pi
ai − x

)2

−
n∑

i=1

pi
(ai − x)2

=⇒ f ′′(0) =

(
n∑

i=1

pi
ai

)2

−
n∑

i=1

pi
a2i

> 0

Therefore, f ′′(x) > 0 for x ∈ (−∞, b1].
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f ′(b1) = 0 and f ′′(b1) > 0. Therefore, f ′(b1 + ϵ) > 0 for all very small ϵ. f ′(x) has the
same sign in (b1, a2) because b1 is the only root of f ′(x) in [b1, a2). Therefore, f ′(x) > 0
for x ∈ (b1, a2).

Since f is convex in (−∞, b1], for α ∈ [0, 1],

f(αa1) = f((1− α)0 + αa1) ≤ (1− α)f(0) + αf(a1) = (1− α)

Setting α to x/a1, we get that for x ∈ [0, a1], f(x) ≤ 1− x
a1

⇒ g(x) ≤ 0.

g(0) = g(a1) = 0. By Rolle’s theorem, ∃x0 ∈ (0, a1), g
′(x0) = 0. Since g′′(x) = f ′′(x) > 0

for x ∈ (−∞, b1], g
′(x) > 0 for x ∈ (x0, b1].

g′(x) = f ′(x) + 1
a1
. For x ∈ (b1, a2), f

′(x) > 0 ⇒ g′(x) > 0. Therefore, g′(x) > 0 for
x ∈ [a1, b1).

Since g(a1) = 0 and g′(x) > 0 for x ∈ [a1, b1), g(x) > 0 for x ∈ (a1, b1).

6.3 Q has some clustered eigenvalues

Suppose Q has eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd, where for some constants a and b,

0 < a ≤ λd ≤ . . . ≤ λr+1 < b < λr ≤ . . . ≤ λ1

Let µi = λi for i from 1 to r. Let µr+1 =
a+b
2
.

P r+1(x) =
r+1∏
j=1

(
1− x

µj

)
Pr(x) =

Pr+1(x)− 1

x
h(x) = 1− x

µr+1

It’s easy to prove (similar to lemma 9) that Pr is a polynomial and has degree r.

Since P r+1 is of the right form, we can apply theorem 10.

By part 1 of theorem 10, we get that for x ∈ [a, a+b
2
], P r+1(x) ≥ 0. By part 2 of theorem

10, we get that for x ∈ [a, a+b
2
],

P r+1(x) ≤ h(x) ≤ h(a) =
b− a

b+ a

By part 1 of theorem 10, we get that for x ∈ [a+b
2
, b], P r+1(x) ≤ 0. By part 2 of theorem

10, we get that for x ∈ [a+b
2
, b],

P r+1(x) ≥ h(x) ≥ h(b) = −b− a

b+ a

Therefore, for x ∈ [a, b],
∣∣P r+1(x)

∣∣ ≤ b−a
b+a

. Therefore,

E(xr+1)

E(x0)
≤
(
b− a

b+ a

)2

We can use the above fact to design an algorithm called the ‘partial conjugate gradient’
algorithm. In this algorithm, we’ll start at the point z0 and run the conjugate gradient
algorithm for r + 1 steps to reach the point z1. Then we’ll rerun the conjugate gradient
algorithm for r + 1 steps from z1 to reach a point z2, then we’ll rerun the conjugate
gradient algorithm for r + 1 steps from z2 to reach a point z3, and so on. We’ll do this l

times. After l iterations E(zl)
E(z0)

=
(
b−a
b+a

)2l
. This will give us linear convergence.
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