CMO: Conjugate Descent

Eklavya Sharma

Objective: Minimize f(z) = 227 Qz — b"z, where ) is symmetric and positive definite.
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1 (-conjugate vectors
Definition 1. A set of d-dimensional non-0 vectors U = {ug, u1, ..., ur_1} is Q-conjugate

iff Vi # j,ul Qu; = 0.
Theorem 1. If U = {ug,...,uq_1} is Q-conjugate, then U is a basis of R?.

Proof. Assume U is linearly dependent. Then one of the vectors in U can be represented
as a linear combination of the other (proof). Without loss of generality, assume ug_; =

Vitd—1,

d—2 d—2
T T T T
0=u; Qug—1 =u; Q E au; | = E au; Quj = au; Qup = a; =0

Jj=0 J=0
Hence, ug_1 =0= L.

On assuming U to be linearly dependent, we got a contradiction. Therefore, U is linearly
independent.

Since |U| = d = dim(R?), U is a basis of R? (proof). O

Since @ is positive definite, ul Qu; > 0 for all .


https://sharmaeklavya2.github.io/theoremdep/nodes/linear-algebra/vector-spaces/linindep.html
https://sharmaeklavya2.github.io/theoremdep/nodes/linear-algebra/vector-spaces/basis/n-linindep-is-basis.html

2 Descent algorithm using ()-conjugate vectors

We'll develop a descent algorithm which uses wuy, in the &* iteration with exact line search.
The name of this algorithm will be ‘Conjugate Gradient Algorithm’.

Let g(a) = f(xg + auy) and gx = Vy(xx)" (sorry for overloading variables; the subscript
will help distinguish them though). Therefore, ¢’(0) = V(zx) = g and ¢”(0) = uf Qu.

By univariate Taylor series, we get
2

9(a) = 9(0) + ag'(0) + S-4"(0)

Let af = argmin, f(xy + auy). Therefore,

g0 giw
9"(0)  ug Quy

*
O[k,—_

k—1
We'll choose zy11 = 2 + ajuy. Therefore, zp, =z + Y ;) oju;.

3 Proof of convergence

Theorem 2.

. {0 ifj <k

U; 9k = o
’ ulgo ifj >k
Proof.

gk = V(o) = Qup — b

k—1

1=0

k—1
= (Quo— ) + ) _ o} Qu,
=0

k-1

= go + Z a; Quy
=0



k-1
U]Tgk = U]T (90 + Z OéfQui)

=0

k-1
T T
=u; go + E a;u; Qu;
i=0

k:_l T . .

. lQuy i=

:“J'WZO"'{ 0 z‘#j}
=0

*, T :
7 aju; Quy j <k
_ujgg+{ 0 ]Zk

T .
o Jujgp j<k
A { 0 jzk}

When j = k, we get ul gr = u} go. Therefore,

T .
T _ T ujg; Jj<k

T .
_.T._ JUi9% J<k

_{ 0 j<l<;}
ulfgo j=>k

Corollary 2.1. g; = 0. This means that the conjugate descent algorithm converges in d
iterations.

]

Proof. By the previous theorem (2), V0 < j < d—1, u]ng = 0. Since U = {ug, u1,...,uq_1}
forms a basis of RY, we get that Vo € RY, 27g; = 0. Therefore, g1 gs =0 = g4 =0. O

We’ll now look at an alternative way of proving convergence which will give us more
insight.

Let By = {zo + Zf:_ol Biu; : B; € R}. Since U is a basis of RY, By = R?. Therefore, to
prove convergence of this algorithm, we’ll prove the following theorem.

Theorem 3 (Expanding subspace theorem). Vk, ), = argmin,cp f(z).

T = 20 + Yoy @u;. Let of = [af,...,af 1] Let h(B) = f(xo + S1—y Bsu;). Then
Mingep, f(z) = mingege h(B). Since h(a*) = f(x), if we prove that a* = argmingcgr h(3),
then r;, = argmin, .z f(2).

Lemma 4. h(B) is a convez function.

Proof. Let U = [ug,uy,...,ux—1] be a d by k matrix. Then

k-1
(UB); = ‘ Ulg,ilBi = » (us);Bi = (Z Uzﬂi)



k—1
= h(B)=Tf (a?o + Z Bu> = f(zo+ UP)
=0

h(B) = f(zo + US)
= fa0) + Vylao)"(UB) + L (U QUP) (by Taylor serics)

= Jlwn) + (Vo) V)5 + 367 (U7 QU)S

This is a quadratic function in 3. It is convex iff UT QU is positive definite.

By the rules for multiplying stacked matrices, we get that (UTQU);; = u! Qu;. Since
vectors in U are @Q-conjugate, ul Qu; = 0 when i # j. Therefore, UTQU is a diagonal
matrix. Also, Vi, u! Qu; > 0 because @ is positive definite. Therefore, all diagonal entries
of UTQU are positive. Therefore, UTQU is positive definite. O

Since h(f) is convex, V,(8) = 0 is a necessary and sufficient condition for minimum.

For all j € [0,k — 1]

k—1 k—1
h(ﬁ)j = af(xo i Zi:o Bim) = UJT vf (950 + Z 5iuz‘>
i=0

dB;
k-1
h(a”); = UJT Vi <$0 + Z Cﬁ%‘) = UJT Vi(xy) = u;‘-ng =0 (by theorem 2)
i=0

Therefore, o minimizes h, so x4 minimizes f.

4 Rate of convergence
Unlike the previous algorithms, this algorithm:

e Converges exactly (instead of only ‘approaching’ the solution).

e Converges very fast — in exactly d steps.

5 Choosing ()-conjugate pairs

We will find U as follows: uy = —go and ug1 = —grr1 + Brur. We'll choose [y, such that
ul Qugs1 = 0.

qugk+1

0 = uj Qupyr = —uf Qi1 + Bruf Que = B = A
U, Quy,


https://sharmaeklavya2.github.io/theoremdep/nodes/linear-algebra/matrices/stacking/product.html

Algorithm 1 CGA(z): Conjugate Gradient Algorithm for f(z) = 327 Qz — b"z. Takes

starting point as input.
1: g0 = Qrg—0

2: if go == 0 then

3: return z

4: end if

5t U = —do

6: for i € [0,00) do
—g; Ui
U?Quz‘

8: Tip1 = Ti + QU
9: git1 = Quip1 — b
10: lf giv1 =< O then

o; =

11: return z;.

12: end if

13: 8 = u’zTQgi-H

14: WUir1 = —Git1 T ﬁzul
15: end for

Theorem 5. U is (Q-conjugate.

Proof. Proof can be found in the lecture notes for the course ‘Optimization II - Numerical
Methods for Nonlinear Continuous Optimization’ by A. Nemirovski, in Theorem 5.4.1,
page 95. L]

Proof sketch. First induct on k to prove that for all &,

span({go, g1, - - -, g« }) = span({go, Qgo, . - ., @"g0}) = span({uo, w1, . .., us})

This can be done using the facts that gri1 — gr = Q211 — ;) = axQuy and that
Vg1 = —Gkt1 + Bk

Then induct on k to prove that
Yk, Vi < k,ui Qu; = 0

To do this, express vg41 as —ggr1+5kVk, Write Qu; as a linear combination of {vg, vy, ..., vi41}
and carefully invoke theorem 2. m

6 Faster convergence for structured eigenvalues

When the eigenvalues of () have certain properties, we can guarantee faster convergence.

Byy1 = xo + span(ug, . ..,ux). Therefore, any vector x € By, can be expressed as
To + Zf:o viu;. Since span(ug, . . ., ug) = span(go, . .., Q%go), © = ¢ + (Zf:o 51QZ> Jo-

Let Poly” be the set of univariate polynomials of degree at most k& where the coefficients
are from R and the variable is an n by n matrix over R. Therefore,

T € By, = (EIP;g € Poly*, z = o + Pk(Q)gO)

D


https://www2.isye.gatech.edu/~nemirovs/Lect_OptII.pdf
https://www2.isye.gatech.edu/~nemirovs/Lect_OptII.pdf

v — " = (w9 — %) + Fi(Q)go = (z0 — ") + Pu(Q)Q(zo — 27)
= ([ + QF:(Q))(xo — 27)

Define E(x) = f(z) — f(2*). By Taylor series,

B(z) = 3 (a— 1) Q(r — o)
= S w0 a°) (I + QPUQ) QU + QPQ) (w0 — #°)
= (o0~ 2T QU + Q@) (o — 2°)
Let R = {ejy,eq,...,eq4} be the set of orthonormal eigenvectors of Q. Let Ay > Ay >

... > Mg be the corresponding eigenvalues. Since R forms a basis of R?, 2y — 2* can be
represented as a linear combination of R. Let xqg — 2* = Zle Gei = (.

Lemma 6. E(zy) = 130 2\

Proof. Let R be a matrix whose i® column is e;. Since the eigenvectors are orthonormal,
RRT =RTR=1. Let ( =[(1,...,¢(q)". Then

d
RC=) (e =mzg—a"

i=1

Since @ is symmetric, Q = RDRT, Where D is a diagonal matrix whose i'" entry is \;.
Therefore,

2E(x0) = (w0 — 27)" Q(z0 — 2") = (R¢)" (RDR")(RC)

d
= ("(R"R)D(R"R)¢ = ("D¢ = > ¢\
=1

]

Lemma 7 (Homework). Let T be a polynomial where T(X) = X (I + X Py(X))?. Then
d
E('T) = % 21:1 C?T()\z)

Hint. Use the fact that for all 7 € N, R is also the set of eigenvectors of ()’ and the
corresponding eigenvalues are Aj, ..., X}, O

Lemma 8. For any polynomial P, € Poly,

E($k+1) d )
(2] rgm()x(l + AiPe(N\))



Proof.

E(zpy1) = min E(x) (Expanding subspace theorem)

TEBK 11

— min Zu (14 X\Pu(N))?

P, €Poly* 2
< i 550 (08 (s +an0r))
:prenpiﬁk < ZC )\> (maX 1+ XNPe(\)) )

= E(zp) min mcéx(l + N Pr(\))?

P,ePoly®k =0

]

Therefore, by cleverly choosing a polynomial, we can prove useful bounds on convergence.

6.1 () has r distinct eigenvalues

Suppose Q has r distinct eigenvalues iy > pg > ... > . Let Pp(z) = 1+ 2P, (x).

We’ll construct P._; such that ?r(x) =0 for all 1 < ¢ < r. This would mean that

ggi;i = 0, so the conjugate gradient algorithm will converge in r iterations.

Define P, and P,_; as follows:
_ ! x P.(z)—1
P(z)=]] (1 — —) Py(z) = Prlo) -1

ol Hj

Lemma 9. P,_; is a polynomial of degree v — 1 such that Y0 < i < r, P.(u;) = 0.

Proof. Clearly, P,(u;) = 0 for all 4. Also, the degree of P is 7.

Next, we must prove that F,_; is a polynomial. Note that P,.(0) =1, s0 0 is a root of
P.(z ) 1. Therefore, z is a factor of P,(z) — 1 and hence P,_; is a polynomial.

Since the degree of P, is r, the degree of P,_; is r — 1. O

6.2 Theorem for a polynomial
In this section, we’ll prove a theorem for a certain polynomial which we’ll use in the next
section.

Theorem 10. Letn > 2. Let 0 < a3y < as < ... < a,. Let p1,ps,...,pn be positive
integers and let p; = 1.

f<x>=f[(1—3)pi g(x) = fla) — 1+ =

a1



1. f is positive in (—o0,ay), negative in (a1, as) and 0 at ay and as.
2. g(x) <0 forxz €[0,a1] and g(z) > 0 for x € [ay, as).
Proof. Since a; and ay are zeros of f, f(a1) = f(az) = 0. Since a, is the leftmost zero of

f, f has the same sign in (—o0,a;) (by intermediate value theorem). Since f(0) =1, f
is positive in (—o0, aq).

Let

h(x) =[] —a)"™!

i=1
Then hy(z) divides f'(x).

By Rolle’s theorem, there must be points b; < by < ... < b,_1 such that for all 7,
f/(bz) =0 and bz c (CLi7 (LH_1>. Let

n—1

hao(x) = [[(x = by)

i=1
So ho(x) divides f'(x).
Let N =" p;. Then deg(f) = N. Also

deg(hiho) = deg(hy) + deg(hy) = (N —n) + (n—1) = N — 1 = deg(f’)

Therefore, f'(z) = yhyi(z)ha(x) for some v € R.

Since p; = 1, by is the leftmost zero of f’ and it is the only zero in (—o0, as). Therefore,
f'(z) has the same sign for x € (—o0,by). Since f(0) = 1, f(0) = — ?Zla%_ < 0.
Therefore, f'(z) <0 for x € (—o0,by).

Since f(a;) = 0 and f'(a1) < 0, f(ay +¢€) < 0 for all very small e. Also, f has the
same sign in (ag, ag), otherwise it would have a root in (ay, az), which we know is false.
Therefore, f(x) < 0 for € (a1, az). This completes the proof of part 1 of this theorem.

Applying Rolle’s theorem to f’(x) and by a similar argument (todo: expand this), we get
that f”(z) must have its leftmost root in (b1, as). Therefore, f”(z) has the same sign in
(—OO, bl] .

@) (& n )Y & p
flz) <Z ai—x> Z(ai—x)z

i=1 i=1

n 2 n
———>f”(0):<2%> —Z%>0
i=1 " i=1 "t

Therefore, f”(z) > 0 for z € (—o0, by].



f'(by) = 0 and f"(by) > 0. Therefore, f'(by + €) > 0 for all very small e. f’(z) has the
same sign in (b1, ay) because by is the only root of f'(x) in [by,as). Therefore, f'(z) > 0
for x € (bl,CLQ).

Since f is convex in (—o0, by}, for a € [0, 1],
flaay) = f(1 = )0 + aar) < (1= a)f(0) + af(a) = (1 - )
Setting a to z/ay, we get that for x € [0, a1, f(z) <1— = = g(x) <O0.

g(0) = g(a;) = 0. By Rolle’s theorem, Jzy € (0,a1), ¢ (z9) = 0. Since ¢"(z) = f"(z) > 0
for x € (—o0,by], ¢'(z) > 0 for = € (g, by].

g () = f'(z) + i For z € (b1, as), f'(x) > 0 = ¢'() > 0. Therefore, ¢'(z) > 0 for
x € [al,bl).

Since g(a;) = 0 and ¢'(z) > 0 for = € [a1,by), g(x) > 0 for x € (ay,by). O

6.3 () has some clustered eigenvalues

Suppose ) has eigenvalues Ay > A\ > ... > )4, where for some constants a and b,
O<a<< <. ...< AN <b< A< <\

Let p; = A\; for 7 from 1 to r. Let p,11 = “TH’

P,(z) = H (1 — ﬁ) P.(z) = —P’"“@) —1 hz)=1- x

Hj x Hr+1

j=1
It’s easy to prove (similar to lemma 9) that P, is a polynomial and has degree r.

Since P, is of the right form, we can apply theorem 10.

By part 1 of theorem 10, we get that for z € [a, “T*b], P,.1(x) > 0. By part 2 of theorem
10, we get that for z € [a, “T“’],
— _b—a

Pria(z) < Wx) < hia) = b+a

By part 1 of theorem 10, we get that for x € [‘IT“’, b], P,,1(x) <0. By part 2 of theorem
10, we get that for z € [2£2, ],

Proa(e) 2 h(e) 2 h(5) =~

Therefore, for z € [a, b],

E(z,11) < b—a\’

E(xg) — \b+a
We can use the above fact to design an algorithm called the ‘partial conjugate gradient’
algorithm. In this algorithm, we’ll start at the point 2z, and run the conjugate gradient
algorithm for r + 1 steps to reach the point z;. Then we’ll rerun the conjugate gradient

algorithm for r 4+ 1 steps from z; to reach a point 2, then we’ll rerun the conjugate

gradient algorithm for r 4+ 1 steps from 25 to reach a point z3, and so on. We'll do this [

Blz) _ (b—_a
E(z0) b+a

Pii(z)] < er—g Therefore,

times. After [ iterations )21. This will give us linear convergence.

9
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