CMO: Goldstein and Wolfe optimization

Eklavya Sharma

Definition 1. C] is the subset of C' functions for which
I Vi(2) = Vi(2)[| < Lz — =]

This s called the Lipschitz condition.

Objective: Minimize a lower-bounded C} function f : R? — R.
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1 Goldstein and Wolfe conditions

Let u be a direction of decrease at () (i.e. Vi(z®)Tu < 0). Our descent algorithm will
repeatedly choose a direction of descent (not necessarily steepest descent) and move in
that direction with magnitude a.

Unlike the previous algorithms we saw, we’ll not necessarily pick a as argmin, -, f(z+au).
This is called inexact line search. But this doesn’t mean we can pick « arbitrarily.
We still have to be smart about picking a to guarantee (quick) convergence. There are 2
famous ways of picking a: by the Goldstein conditions and the Wolfe conditions.

Let g(a) = f(z'9 + au). Therefore, ¢'(0) = V(29)Tu < 0. Also, g is lower bounded
because f is lower-bounded.

Draw a line which passes through (0, g(0)) with slope m1¢'(0), where 0 < m; < 1 (note
that the slope is negative). Let hi(a) = ¢(0) + m1¢'(0)ar be that line. Let t(a) =

hi(a) — g(a).

Lemma 1. ¢ has a positive zero. Let oy be the smallest positive zero. Then t is positive
in the interval (0,ay). Formally,

Ja, > 0, (K@) = 0 A (Ya € (0,a@1), t(a) > 0))
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Proof. Let f* be the minimum value of f.

f*—g(0)

>0
m1g'(0)

hi(a) —gla) <0<=hi(a) — fF<0 <= a>

Therefore, there is an « for which #(a) < 0.

Since g € C*, by Taylor series, we get that for very small positive «,
g9(a) = g(0) + ¢'(0)a + ao(1)

— t(a) = a((1 —m)(—g'(0)) +o(1)) > 0
Therefore, there is an « for which ¢(a) > 0.

Since g is continuous, by the intermediate value theorem, there must be an @; > 0 for
which t(a@;) = 0. Without loss of generality, assume that @; is the smallest positive zero
of t. Since t(«) > 0 for small positive a, t(«) > 0 for all « € (0,@). O

In our descent algorithm, if we choose a from the interval (0, @), then ¢g(0) = hy(0) >
hi(a) > g(a). This means that f(z?) > f(2® + au), which is what we required.

However, the decrease may be too small, especially if « is very close to 0. To counteract
this, we’ll impose another condition on ov. We have 2 choices here.

1.1 Goldstein condition

Let hao(a) = g(0) + mag'(0)a, where 0 < my < mg < 1. Therefore, hy — g has a smallest
positive zero @s. Also, @y < a@;. We'll chose a from the interval (@, a7). This is called
the Goldstein condition for choosing a.

1.2 Wolfe condition

Choose an « € (0,@;) such that ¢'(a) > m3g’(0), where ms € (0,1). This is called the
Wolfe condition.

Theorem 2. If mz > my, it’s possible to satisfy the Wolfe condition.

Proof. Suppose we choose & € (0,@;). Since g is differentiable, by mean value theorem,
we get

Ja € [@,aq], ¢ (a)(m —a) = g(ar) — g(a)

Combine the above result with g(a@) < hi(a@) and g(@) = hi(@) to get ¢'(a) > ¢'(0)my.

If we choose m3 > my, then ¢'(0)mgz < ¢'(0)m; < ¢'(«). Therefore, the Wolfe condition
is satisfied for some a € (0,a;). O



2 Convergence of Wolfe condition

g'(a) = mgg’(O) (by Wolfe condition)
= V(2@ + au)"u > my Vi (2D)u

= (Vi(2® + au) — V(™) u > —(1 —my) Vs(2@)u
(subtract Vi(z®¥)Tu from both sides)

= HVf(fE(i) + au) — Vy(z || > —(1 —mg) V(D) Tu
(both 51des were +ve. Apply Cauchy-Schwarz inequality)
= Laful> > —(1 — m3) V(2 Ty (Lipschitz condition)
—(1 = my) V(@) "u
= a >
Lju]l?

g(a) < hi(a) = 9(0) +mag'(0)a
= f(z ’H)) <f( )+m1Vf( ) U

my(1 — ms) (vf@;(i))%)?

= f(a) = flalh) > P

Let Vi (z®)Tu = — cos 6; || V(@) [|u]|. We’ll impose another constraint: we’ll choose u
to not just be the descent direction, but also in a way that cos#; is lower-bounded by a
positive constant.

m1(1 —

~7) o2, 95 (a0

fa®) = fa™) =

Summing ¢ from 0 to 7' — 1, we get

T-1

VT ) 2 fa) - faD) > M0 > cos?0, |95}

oy cos? 0; || V() H is a convergent series. So for i — oo, Vy(z) — 0.

Therefore, for i — oo, £ approaches a stationary point. Therefore, the descent algo-
rithm which uses Wolfe condition converges to a stationary point, which would hopefully
be a local minimum.

3 Alternate Characterization of C}

Let f € C}. Let g(a)

= f(z + aly — 2)). Then g'(a) = Vy(z + aly — 2))"(y — 2).
Therefore, g(0) = f(x), g(1) !

= f(y) and ¢'(0) = V;(2)" (y — 2).

/0 (¢'(c) — ¢ (0))dar = f(y) — f(2) — Vy(x)"(y — )



|f(y) = f(z) = V(@) (y — o)

1

(g’(a) g'(0))da

/Wg — §(0)|da

(Vi@ +aly —2)) = Vi(@)" (y - 2)| da

0

1
< / |Vi(x +aly —x)) — Vi(z)|| ||y — z||da (Cauchy-Schwarz inequality)
0
1
< / La|ly — z||*da (Lipschitz condition)
0
= §||y —a?

4 Convergence of Goldstein condition

Let u = V;(z@) and 2(+Y = 2 — qu.
Let g(a) = f(z@ — au). Then ¢'(0) = — V() u = —||ul?.
hi(a) = g(0) +mug'(0)a = f(2@) — amu||ul|*. Similarly ho(a) = f(21) — amol|ul®.

ha(@) < g(a) < ha(e)
= f(2V) —maaful® < f(@V) < (@) = miallul®
= mualul* < f(¥) = f(2) < maallul?

Fa®) = £ + V@) (20 = a)
< maalful® + V(a7 (@) —2)
= maalfull* — aljull?

—(1 = ma)aful*



Therefore, by Lipschitz condition,

L. i Lo |Jul)?
(1 = ma)alulP < 5 a®+) — 2O = =2
2(1 — mg)
e D> ——
“=7
2(1 — mg)ml

7 llull* < maaflul® < f(@0) = f@)

T-1
— v, 20 2T < 1) = 1) < ) =
T-1

— VI, Vi) <

=0

(f(=©) = fL

2']77,1(1 — mg)

Yo ||Vf(.’17(i))||2 is a convergent series. So for i — oo, V;(z(V) — 0.

Therefore, for i — oo, ¥ approaches a stationary point. Therefore, the descent al-
gorithm which uses Goldstein condition converges to a stationary point, which would
hopefully be a local minimum.

5 Rate of convergence
When descent direction is — V;(z(¥), for both the Wolfe condition and the Goldstein
condition, the sum Z;.F:_Ol HVf(x(i))HQ is upper-bounded. Denote the upper bound by N.

Let § = min, || Vi(z®)|. Then T2 < N. Therefore, § < \/g This tells us how fast z(®
converges to a stationary point.
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