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Definition 1. C1
L is the subset of C1 functions for which

∥∇f (x)−∇f (z)∥ ≤ L∥x− z∥

This is called the Lipschitz condition.

Objective: Minimize a lower-bounded C1
L function f : Rd 7→ R.

Contents

1 Goldstein and Wolfe conditions 1
1.1 Goldstein condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Wolfe condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Convergence of Wolfe condition 3

3 Alternate Characterization of C1
L 3

4 Convergence of Goldstein condition 4

5 Rate of convergence 5

1 Goldstein and Wolfe conditions

Let u be a direction of decrease at x(i) (i.e. ∇f (x
(i))Tu < 0). Our descent algorithm will

repeatedly choose a direction of descent (not necessarily steepest descent) and move in
that direction with magnitude α.

Unlike the previous algorithms we saw, we’ll not necessarily pick α as argminα>0 f(x+αu).
This is called inexact line search. But this doesn’t mean we can pick α arbitrarily.
We still have to be smart about picking α to guarantee (quick) convergence. There are 2
famous ways of picking α: by the Goldstein conditions and the Wolfe conditions.

Let g(α) = f(x(i) + αu). Therefore, g′(0) = ∇f (x
(i))Tu < 0. Also, g is lower bounded

because f is lower-bounded.

Draw a line which passes through (0, g(0)) with slope m1g
′(0), where 0 < m1 < 1 (note

that the slope is negative). Let h1(α) = g(0) + m1g
′(0)α be that line. Let t(α) =

h1(α)− g(α).

Lemma 1. t has a positive zero. Let α1 be the smallest positive zero. Then t is positive
in the interval (0, α1). Formally,

∃α1 > 0, (t(α1) = 0 ∧ (∀α ∈ (0, α1), t(α) > 0))
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Proof. Let f ∗ be the minimum value of f .

h1(α)− g(α) < 0 ⇐ h1(α)− f ∗ < 0 ⇐⇒ α >
f ∗ − g(0)

m1g′(0)
> 0

Therefore, there is an α for which t(α) < 0.

Since g ∈ C1, by Taylor series, we get that for very small positive α,

g(α) = g(0) + g′(0)α + αo(1)

=⇒ t(α) = α((1−m1)(−g′(0)) + o(1)) > 0

Therefore, there is an α for which t(α) > 0.

Since g is continuous, by the intermediate value theorem, there must be an α1 > 0 for
which t(α1) = 0. Without loss of generality, assume that α1 is the smallest positive zero
of t. Since t(α) > 0 for small positive α, t(α) > 0 for all α ∈ (0, α1).

In our descent algorithm, if we choose α from the interval (0, α1), then g(0) = h1(0) >
h1(α) > g(α). This means that f(x(i)) > f(x(i) + αu), which is what we required.

However, the decrease may be too small, especially if α is very close to 0. To counteract
this, we’ll impose another condition on α. We have 2 choices here.

1.1 Goldstein condition

Let h2(α) = g(0) +m2g
′(0)α, where 0 < m1 < m2 < 1. Therefore, h2 − g has a smallest

positive zero α2. Also, α2 < α1. We’ll chose α from the interval (α2, α1). This is called
the Goldstein condition for choosing α.

1.2 Wolfe condition

Choose an α ∈ (0, α1) such that g′(α) ≥ m3g
′(0), where m3 ∈ (0, 1). This is called the

Wolfe condition.

Theorem 2. If m3 ≥ m1, it’s possible to satisfy the Wolfe condition.

Proof. Suppose we choose α̂ ∈ (0, α1). Since g is differentiable, by mean value theorem,
we get

∃α ∈ [α̂, α1], g
′(α)(α1 − α̂) = g(α1)− g(α̂)

Combine the above result with g(α̂) < h1(α̂) and g(α) = h1(α) to get g′(α) > g′(0)m1.

If we choose m3 ≥ m1, then g′(0)m3 ≤ g′(0)m1 < g′(α). Therefore, the Wolfe condition
is satisfied for some α ∈ (0, α1).
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2 Convergence of Wolfe condition

g′(α) ≥ m3g
′(0) (by Wolfe condition)

⇒ ∇f (x
(i) + αu)Tu ≥ m3∇f (x

(i))Tu

⇒
(
∇f (x

(i) + αu)−∇f (x
(i))

)T
u ≥ −(1−m3)∇f (x

(i))Tu

(subtract ∇f (x
(i))Tu from both sides)

⇒
∥∥∇f (x

(i) + αu)−∇f (x
(i))

∥∥ ≥ −(1−m3)∇f (x
(i))Tu

(both sides were +ve. Apply Cauchy-Schwarz inequality)

⇒ Lα∥u∥2 ≥ −(1−m3)∇f (x
(i))Tu (Lipschitz condition)

⇒ α ≥ −(1−m3)∇f (x
(i))Tu

L∥u∥2

g(α) < h1(α) = g(0) +m1g
′(0)α

⇒ f(x(i+1)) < f(x(i)) +m1∇f (x
(i))Tuα

⇒ f(x(i))− f(x(i+1)) >
m1(1−m3)

L

(
∇f (x

(i))Tu

∥u∥

)2

Let ∇f (x
(i))Tu = − cos θi

∥∥∇f (x
(i))

∥∥ ∥u∥. We’ll impose another constraint: we’ll choose u
to not just be the descent direction, but also in a way that cos θi is lower-bounded by a
positive constant.

f(x(i))− f(x(i+1)) ≥ m1(1−m3)

L
cos2 θi∥∇f (x

(i))∥2

Summing i from 0 to T − 1, we get

∀T, f(x(i))− f ∗ ≥ f(x(0))− f(x(T )) ≥ m1(1−m3)

L

T−1∑
i=0

cos2 θi
∥∥∇f (x

(i))
∥∥2

∴
∑∞

i=0 cos
2 θi

∥∥∇f (x
(i))

∥∥2
is a convergent series. So for i → ∞, ∇f (x

(i)) → 0.

Therefore, for i → ∞, x(i) approaches a stationary point. Therefore, the descent algo-
rithm which uses Wolfe condition converges to a stationary point, which would hopefully
be a local minimum.

3 Alternate Characterization of C1
L

Let f ∈ C1
L. Let g(α) = f(x + α(y − x)). Then g′(α) = ∇f (x + α(y − x))T (y − x).

Therefore, g(0) = f(x), g(1) = f(y) and g′(0) = ∇f (x)
T (y − x).∫ 1

0

(g′(α)− g′(0))dα = f(y)− f(x)−∇f (x)
T (y − x)
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∣∣f(y)− f(x)−∇f (x)
T (y − x)

∣∣
=

∣∣∣∣∫ 1

0

(g′(α)− g′(0))dα

∣∣∣∣
≤

∫ 1

0

|g′(α)− g′(0)|dα

=

∫ 1

0

∣∣∣(∇f (x+ α(y − x))−∇f (x))
T (y − x)

∣∣∣ dα
≤

∫ 1

0

∥∇f (x+ α(y − x))−∇f (x)∥ ∥y − x∥dα (Cauchy-Schwarz inequality)

≤
∫ 1

0

Lα∥y − x∥2dα (Lipschitz condition)

=
L

2
∥y − x∥2

4 Convergence of Goldstein condition

Let u = ∇f (x
(i)) and x(i+1) = x(i) − αu.

Let g(α) = f(x(i) − αu). Then g′(0) = −∇f (x
(i))Tu = −∥u∥2.

h1(α) = g(0) +m1g
′(0)α = f(x(i))− αm1∥u∥2. Similarly h2(α) = f(x(i))− αm2∥u∥2.

h2(α) ≤ g(α) ≤ h1(α)

⇒ f(x(i))−m2α∥u∥2 ≤ f(x(i+1)) ≤ f(x(i))−m1α∥u∥2

⇒ m1α∥u∥2 ≤ f(x(i))− f(x(i+1)) ≤ m2α∥u∥2

f(x(i))− f(x(i+1)) +∇f (x
(i))T (x(i+1) − x(i))

≤ m2α∥u∥2 +∇f (x
(i))T (x(i+1) − x(i))

= m2α∥u∥2 − α∥u∥2

= −(1−m2)α∥u∥2
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Therefore, by Lipschitz condition,

(1−m2)α∥u∥2 ≤
L

2
∥x(i+1) − x(i)∥2 = Lα2∥u∥2

2

=⇒ α ≥ 2(1−m2)

L

=⇒ 2(1−m2)m1

L
∥u∥2 ≤ m1α∥u∥2 ≤ f(x(i))− f(x(i+1))

=⇒ ∀T, 2(1−m2)m1

L

T−1∑
i=0

∥∥∇f (x
(i))

∥∥2 ≤ f(x(0))− f(x(T )) ≤ f(x(0))− f ∗

=⇒ ∀T,
T−1∑
i=0

∥∥∇f (x
(i))

∥∥2 ≤ (f(x(0))− f ∗)L

2m1(1−m2)

∴
∑∞

i=0

∥∥∇f (x
(i))

∥∥2
is a convergent series. So for i → ∞, ∇f (x

(i)) → 0.

Therefore, for i → ∞, x(i) approaches a stationary point. Therefore, the descent al-
gorithm which uses Goldstein condition converges to a stationary point, which would
hopefully be a local minimum.

5 Rate of convergence

When descent direction is −∇f (x
(i)), for both the Wolfe condition and the Goldstein

condition, the sum
∑T−1

i=0

∥∥∇f (x
(i))

∥∥2
is upper-bounded. Denote the upper bound by N .

Let δ = mini ∥∇f (x
(i))∥. Then Tδ2 ≤ N . Therefore, δ ≤

√
N
T
. This tells us how fast x(i)

converges to a stationary point.
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