CMO: Goldstein and Wolfe optimization

Eklavya Sharma

Definition 1. C_L^1 is the subset of C^1 functions for which

 $\|\nabla_f(x) - \nabla_f(z)\| \le L \|x - z\|$

This is called the Lipschitz condition.

Objective: Minimize a lower-bounded C_L^1 function $f : \mathbb{R}^d \to \mathbb{R}$.

Contents

Goldstein and Wolfe conditions	1
1.1 Goldstein condition	2
1.2 Wolfe condition	2
Convergence of Wolfe condition	3
Alternate Characterization of C_L^1	3
Convergence of Goldstein condition	4
Rate of convergence	5
	1.1Goldstein condition

1 Goldstein and Wolfe conditions

Let u be a direction of decrease at $x^{(i)}$ (i.e. $\nabla_f (x^{(i)})^T u < 0$). Our descent algorithm will repeatedly choose a direction of descent (not necessarily steepest descent) and move in that direction with magnitude α .

Unlike the previous algorithms we saw, we'll not necessarily pick α as $\operatorname{argmin}_{\alpha>0} f(x+\alpha u)$. This is called **inexact line search**. But this doesn't mean we can pick α arbitrarily. We still have to be smart about picking α to guarantee (quick) convergence. There are 2 famous ways of picking α : by the Goldstein conditions and the Wolfe conditions.

Let $g(\alpha) = f(x^{(i)} + \alpha u)$. Therefore, $g'(0) = \nabla_f (x^{(i)})^T u < 0$. Also, g is lower bounded because f is lower-bounded.

Draw a line which passes through (0, g(0)) with slope $m_1g'(0)$, where $0 < m_1 < 1$ (note that the slope is negative). Let $h_1(\alpha) = g(0) + m_1g'(0)\alpha$ be that line. Let $t(\alpha) = h_1(\alpha) - g(\alpha)$.

Lemma 1. t has a positive zero. Let $\overline{\alpha}_1$ be the smallest positive zero. Then t is positive in the interval $(0, \overline{\alpha}_1)$. Formally,

 $\exists \overline{\alpha}_1 > 0, (t(\overline{\alpha}_1) = 0 \land (\forall \alpha \in (0, \overline{\alpha}_1), t(\alpha) > 0))$

Proof. Let f^* be the minimum value of f.

$$h_1(\alpha) - g(\alpha) < 0 \iff h_1(\alpha) - f^* < 0 \iff \alpha > \frac{f^* - g(0)}{m_1 g'(0)} > 0$$

Therefore, there is an α for which $t(\alpha) < 0$.

Since $g \in C^1$, by Taylor series, we get that for very small positive α ,

$$g(\alpha) = g(0) + g'(0)\alpha + \alpha o(1)$$

 $\implies t(\alpha) = \alpha((1 - m_1)(-g'(0)) + o(1)) > 0$

Therefore, there is an α for which $t(\alpha) > 0$.

Since g is continuous, by the intermediate value theorem, there must be an $\overline{\alpha}_1 > 0$ for which $t(\overline{\alpha}_1) = 0$. Without loss of generality, assume that $\overline{\alpha}_1$ is the smallest positive zero of t. Since $t(\alpha) > 0$ for small positive α , $t(\alpha) > 0$ for all $\alpha \in (0, \overline{\alpha}_1)$.

In our descent algorithm, if we choose α from the interval $(0, \overline{\alpha}_1)$, then $g(0) = h_1(0) > h_1(\alpha) > g(\alpha)$. This means that $f(x^{(i)}) > f(x^{(i)} + \alpha u)$, which is what we required.

However, the decrease may be too small, especially if α is very close to 0. To counteract this, we'll impose another condition on α . We have 2 choices here.

1.1 Goldstein condition

Let $h_2(\alpha) = g(0) + m_2 g'(0) \alpha$, where $0 < m_1 < m_2 < 1$. Therefore, $h_2 - g$ has a smallest positive zero $\overline{\alpha}_2$. Also, $\overline{\alpha}_2 < \overline{\alpha}_1$. We'll chose α from the interval $(\overline{\alpha}_2, \overline{\alpha}_1)$. This is called the Goldstein condition for choosing α .

1.2 Wolfe condition

Choose an $\alpha \in (0, \overline{\alpha}_1)$ such that $g'(\alpha) \ge m_3 g'(0)$, where $m_3 \in (0, 1)$. This is called the Wolfe condition.

Theorem 2. If $m_3 \ge m_1$, it's possible to satisfy the Wolfe condition.

Proof. Suppose we choose $\widehat{\alpha} \in (0, \overline{\alpha}_1)$. Since g is differentiable, by mean value theorem, we get

 $\exists \alpha \in [\widehat{\alpha}, \overline{\alpha}_1], g'(\alpha)(\overline{\alpha}_1 - \widehat{\alpha}) = g(\overline{\alpha}_1) - g(\widehat{\alpha})$

Combine the above result with $g(\widehat{\alpha}) < h_1(\widehat{\alpha})$ and $g(\overline{\alpha}) = h_1(\overline{\alpha})$ to get $g'(\alpha) > g'(0)m_1$.

If we choose $m_3 \ge m_1$, then $g'(0)m_3 \le g'(0)m_1 < g'(\alpha)$. Therefore, the Wolfe condition is satisfied for some $\alpha \in (0, \overline{\alpha}_1)$.

2 Convergence of Wolfe condition

$$g'(\alpha) \ge m_3 g'(0) \qquad \text{(by Wolfe condition)}$$

$$\Rightarrow \nabla_f (x^{(i)} + \alpha u)^T u \ge m_3 \nabla_f (x^{(i)})^T u$$

$$\Rightarrow \left(\nabla_f (x^{(i)} + \alpha u) - \nabla_f (x^{(i)}) \right)^T u \ge -(1 - m_3) \nabla_f (x^{(i)})^T u$$
(subtract $\nabla_f (x^{(i)})^T u$ from both sides)

$$\Rightarrow \left\| \nabla_f (x^{(i)} + \alpha u) - \nabla_f (x^{(i)}) \right\| \ge -(1 - m_3) \nabla_f (x^{(i)})^T u$$
(both sides were +ve. Apply Cauchy-Schwarz inequality)

$$\Rightarrow L\alpha \|u\|^2 \ge -(1 - m_3) \nabla_f (x^{(i)})^T u$$
(Lipschitz condition)

$$\Rightarrow \alpha \ge \frac{-(1 - m_3) \nabla_f (x^{(i)})^T u}{L\|u\|^2}$$

$$g(\alpha) < h_1(\alpha) = g(0) + m_1 g'(0) \alpha$$

$$\Rightarrow f(x^{(i+1)}) < f(x^{(i)}) + m_1 \nabla_f (x^{(i)})^T u \alpha$$

$$\Rightarrow f(x^{(i)}) - f(x^{(i+1)}) > \frac{m_1 (1 - m_3)}{L} \left(\frac{\nabla_f (x^{(i)})^T u}{\|u\|} \right)^2$$

Let $\nabla_f(x^{(i)})^T u = -\cos \theta_i \|\nabla_f(x^{(i)})\| \|u\|$. We'll impose another constraint: we'll choose u to not just be the descent direction, but also in a way that $\cos \theta_i$ is lower-bounded by a positive constant.

$$f(x^{(i)}) - f(x^{(i+1)}) \ge \frac{m_1(1-m_3)}{L} \cos^2 \theta_i \| \nabla_f(x^{(i)}) \|^2$$

Summing *i* from 0 to T - 1, we get

$$\forall T, f(x^{(i)}) - f^* \ge f(x^{(0)}) - f(x^{(T)}) \ge \frac{m_1(1 - m_3)}{L} \sum_{i=0}^{T-1} \cos^2 \theta_i \left\| \nabla_f(x^{(i)}) \right\|^2$$

 $\therefore \sum_{i=0}^{\infty} \cos^2 \theta_i \left\| \nabla_f(x^{(i)}) \right\|^2 \text{ is a convergent series. So for } i \to \infty, \, \nabla_f(x^{(i)}) \to 0.$

Therefore, for $i \to \infty$, $x^{(i)}$ approaches a stationary point. Therefore, the descent algorithm which uses Wolfe condition converges to a stationary point, which would hopefully be a local minimum.

3 Alternate Characterization of C_L^1

Let $f \in C_L^1$. Let $g(\alpha) = f(x + \alpha(y - x))$. Then $g'(\alpha) = \nabla_f (x + \alpha(y - x))^T (y - x)$. Therefore, g(0) = f(x), g(1) = f(y) and $g'(0) = \nabla_f (x)^T (y - x)$.

$$\int_0^1 (g'(\alpha) - g'(0))d\alpha = f(y) - f(x) - \nabla_f(x)^T (y - x)$$

$$\begin{split} \left| f(y) - f(x) - \nabla_{f}(x)^{T}(y - x) \right| \\ &= \left| \int_{0}^{1} (g'(\alpha) - g'(0)) d\alpha \right| \\ &\leq \int_{0}^{1} |g'(\alpha) - g'(0)| d\alpha \\ &= \int_{0}^{1} \left| (\nabla_{f}(x + \alpha(y - x)) - \nabla_{f}(x))^{T}(y - x) \right| d\alpha \\ &\leq \int_{0}^{1} \| \nabla_{f}(x + \alpha(y - x)) - \nabla_{f}(x) \| \| y - x \| d\alpha \qquad \text{(Cauchy-Schwarz inequality)} \\ &\leq \int_{0}^{1} L\alpha \| y - x \|^{2} d\alpha \qquad \text{(Lipschitz condition)} \\ &= \frac{L}{2} \| y - x \|^{2} \end{split}$$

4 Convergence of Goldstein condition

Let $u = \nabla_f(x^{(i)})$ and $x^{(i+1)} = x^{(i)} - \alpha u$. Let $g(\alpha) = f(x^{(i)} - \alpha u)$. Then $g'(0) = -\nabla_f(x^{(i)})^T u = -||u||^2$. $h_1(\alpha) = g(0) + m_1 g'(0) \alpha = f(x^{(i)}) - \alpha m_1 ||u||^2$. Similarly $h_2(\alpha) = f(x^{(i)}) - \alpha m_2 ||u||^2$.

$$h_{2}(\alpha) \leq g(\alpha) \leq h_{1}(\alpha)$$

$$\Rightarrow f(x^{(i)}) - m_{2}\alpha ||u||^{2} \leq f(x^{(i+1)}) \leq f(x^{(i)}) - m_{1}\alpha ||u||^{2}$$

$$\Rightarrow m_{1}\alpha ||u||^{2} \leq f(x^{(i)}) - f(x^{(i+1)}) \leq m_{2}\alpha ||u||^{2}$$

$$f(x^{(i)}) - f(x^{(i+1)}) + \nabla_f(x^{(i)})^T (x^{(i+1)} - x^{(i)})$$

$$\leq m_2 \alpha ||u||^2 + \nabla_f(x^{(i)})^T (x^{(i+1)} - x^{(i)})$$

$$= m_2 \alpha ||u||^2 - \alpha ||u||^2$$

$$= -(1 - m_2) \alpha ||u||^2$$

Therefore, by Lipschitz condition,

$$(1 - m_2)\alpha \|u\|^2 \leq \frac{L}{2} \|x^{(i+1)} - x^{(i)}\|^2 = \frac{L\alpha^2 \|u\|^2}{2}$$

$$\implies \alpha \geq \frac{2(1 - m_2)}{L}$$

$$\implies \frac{2(1 - m_2)m_1}{L} \|u\|^2 \leq m_1 \alpha \|u\|^2 \leq f(x^{(i)}) - f(x^{(i+1)})$$

$$\implies \forall T, \frac{2(1 - m_2)m_1}{L} \sum_{i=0}^{T-1} \|\nabla_f(x^{(i)})\|^2 \leq f(x^{(0)}) - f(x^{(T)}) \leq f(x^{(0)}) - f^*$$

$$\implies \forall T, \sum_{i=0}^{T-1} \|\nabla_f(x^{(i)})\|^2 \leq \frac{(f(x^{(0)}) - f^*)L}{2m_1(1 - m_2)}$$

 $\therefore \sum_{i=0}^{\infty} \left\| \nabla_{f}(x^{(i)}) \right\|^{2} \text{ is a convergent series. So for } i \to \infty, \nabla_{f}(x^{(i)}) \to 0.$

Therefore, for $i \to \infty$, $x^{(i)}$ approaches a stationary point. Therefore, the descent algorithm which uses Goldstein condition converges to a stationary point, which would hopefully be a local minimum.

5 Rate of convergence

When descent direction is $-\nabla_f(x^{(i)})$, for both the Wolfe condition and the Goldstein condition, the sum $\sum_{i=0}^{T-1} \|\nabla_f(x^{(i)})\|^2$ is upper-bounded. Denote the upper bound by N. Let $\delta = \min_i \|\nabla_f(x^{(i)})\|$. Then $T\delta^2 \leq N$. Therefore, $\delta \leq \sqrt{\frac{N}{T}}$. This tells us how fast $x^{(i)}$ converges to a stationary point.