CMO: Minimizing a function with bounded hessian

Eklavya Sharma

Objective: Minimize a C^2 function $f : \mathbb{R}^d \to \mathbb{R}$ for which $AI - H_f(x)$ and $H_f(x) - aI$ are positive semi-definite for all $x \in \mathbb{R}^d$ $(0 < a \leq A)$.

The trick we'll use is to lower-bound and upper-bound f. Let $u = \nabla_f(x^{(i)})$. Let

$$
f_l(x) = f(x^{(i)}) + u^T(x - x^{(i)}) + \frac{a}{2} ||x - x^{(i)}||^2
$$

$$
f_h(x) = f(x^{(i)}) + u^T(x - x^{(i)}) + \frac{A}{2} ||x - x^{(i)}||^2
$$

By using Taylor series on f at $x^{(i)}$, we get that $\forall x \in \mathbb{R}^d$, $f_l(x) \le f(x) \le f_h(x)$.

Lemma 1.

$$
f_l^* = \min_x f_l(x) = f(x^{(i)}) - \frac{||u||^2}{2a}
$$

Proof sketch. Set $\nabla_{f_l}(x) = 0$ and solve for x.

Lemma 2. Let h_1 and h_2 be 2 functions such that $\forall x \in \mathbb{R}^d$, $h_1(x) \leq h_2(x)$. Let $h_1^* =$ $\min_x h_1(x)$ and $h_2^* = \min_x h_2(x)$. Then $h_1^* \leq h_2^*$.

 \Box

Proof. Let
$$
x_2 = \operatorname{argmin}_x h_2(x)
$$
. Then $h_1^* \le h_1(x_2) \le h_2(x_2) = h_2^*$.

Let $x^* = \operatorname{argmin}_x f(x)$. Let $E(x) = f(x) - f(x^*)$.

Lemma 3.

$$
E(x^{(i)}) \le \frac{\|u\|^2}{2a}
$$

Proof sketch. By lemma [2,](#page-0-0) $f_l^* \leq f(x^*)$. Now use lemma [1](#page-0-1) to substitute f_l^* . \Box

Let $x^{(i+1)} = x^{(i)} - \frac{u}{4}$ $\frac{u}{A}$. (It can be proven that $x^{(i+1)}$ minimizes f_h , but we're not interested in that fact.)

Lemma 4.

$$
E(x^{(i)}) - E(x^{(i+1)}) \ge \frac{\|u\|^2}{2A}
$$

Proof.

$$
f(x^{(i+1)}) \le f_h(x^{(i+1)}) \qquad (f_h \text{ upper-bounds } f)
$$

= $f(x^{(i)}) + u^T(x^{(i+1)} - x^{(i)}) + \frac{A}{2} ||x^{(i+1)} - x^{(i)}||^2$
= $f(x^{(i)}) - \frac{||u||^2}{A} + \frac{A}{2} \frac{||u||^2}{A^2}$
= $f(x^{(i)}) - \frac{||u||^2}{2A}$
 $\implies E(x^{(i)}) - E(x^{(i+1)}) = f(x^{(i)}) - f(x^{(i+1)}) \ge \frac{||u||^2}{2A}$

 \Box

Therefore,

$$
\frac{E(x^{(i+1)})}{E(x^{(i)})} = 1 - \frac{E(x^{(i)}) - E(x^{(i+1)})}{E(x^{(i)})} \le 1 - \frac{a}{A}
$$

This proves the convergence of our algorithm.