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Let SCR?and f:S+— R.
x* is a local minimum <= 3r > 0,Vz € N,.(z*) NS, f(z*) < f(x).

We’ll restrict our analysis in 2 ways:

e We'll only consider functions for which a global minimum exists. Here we’ll discuss
a sufficient condition for that.

e We'll only try to find a local minimum, since finding global minimum is difficult.

1 Necessary condition for local minimum of univari-
ate function

Theorem 1. If f : R — R is differentiable, then x* is the local minimum of f —

f'(@7) =0,
Proof. Let
h(t) = —f(ti — i(x)

Then f/'(z*) = limy_,,« h(t).

Suppose z* is a local minimum in (z — r,z 4+ 7). Then for ¢t € (x — r,x), h(t) < 0 and
for t € (z,x + 1), h(t) > 0. Therefore, left derivative of f at x* is non-positive and right
derivative of f at x* is non-negative. Since f is differentiable, left and right derivatives
are equal. Therefore, f'(z*) = 0. O

Theorem 2. Let f be a C? function and x* be a local minimum. Then f"(z*) > 0.

Proof. Using Taylor series near =*, we get

Fl@) = F@*) + (o = a) /(@) + o — 2"V @) +ol(e — a*)?)
= 02 () = J@") = 50— 22 ") ol — 2
For this to hold true for all x near z*, f”(z*) > 0. O



2 Characterization of functions which have a mini-
mum

Consider a function from R? to R. Global minimum exists iff f is lower-bounded.
Definition 1.

m f(r) =00 < VF >0,3IM >0,Vz € R* (||z|| > M = f(z) > F)

llz][—o0
If lim |z »o00 f(x) = 00, then f is called a coercive function.

Theorem 3 (Weierstrass’ theorem). If a continuous function’s domain is closed and
bounded, the function has a global minimum and mazimum.

Theorem 4.

| lﬁm f(z) = 0o A f is continuous == f has global minimum
T||—0o0

Proof. Consider F' = f(0). Let 51 = {x : ||| > M} and Sy = {z : ||z]| < M}.

Since f is coercive, Vo € S1, f(0) < f(z). By Weierstrass’ theorem, a global minimum
exists in Sy. Let it be z*. Therefore, f(z*) < f(0). Therefore, z* is a global minimum of
R, O

3 Suflicient condition for local minimum of univari-
ate function

Theorem 5. f'(zo) =0A f"(z9) >0 = ¢ is local minimum.

Proof.

1

Fl@) = Fwo) = 5o =22 "@) + ol (x — 2°)?)

In the neighborhood of z, the small-o term is negligible, so the f”(z*) makes f(x)— f(xo)
positive. Therefore, z( is a local minimum in that neighborhood. O

4 Necessary condition for local minimum of multi-
variate function

Theorem 6. Let f: R — R be a differentiable function. Let x* be a local minimum of
f. Then Vy(z*) = 0.

Proof. Let u € R? and t € R.

ot € Ny(z¥) < |tu] <7 < Jt| < ﬁ = te N (0)
u u



Let g(t) = f(z* + tu).

x* is local minimum of f
=V € N,.(z"), f(z") < f(x)
=Vt e NHTTH(O),f(x*) < f(z" + tu)

=Vt € N+ (0),9(0) < g(t)

llull

= ¢ has local minimum at 0
= 4'(0)=0
= Vi(z*)"u=0
Since this is true for all u € RY, V;(z*) = 0. O

Theorem 7. Let f: R — R be a differentiable function. Let x* be a local minimum of
f. Then Hy(z*) is positive semi-definite.

Proof. Similar to above proof. Use the fact that if g has a local minimum at 0, then

9"(0) = 0. O

5 Sufficient condition for local minimum of multi-
variate function

Theorem 8. Let f: R? — R be a differentiable function. Let V;(zo) = 0 and Hy(zo) be
positive definite. Then xq is a local minimum of f.

Proof. Proof follows directly from Taylor series. O]
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