CMO 2: Taylor Series

Eklavya Sharma

Contents

1 Univariate Taylor Series

Let $f : [a, b] \mapsto \mathbb{R}$. Let $x, y \in [a, b]$.

Suppose f is differentiable k times. Then for some $z \in (x, y)$,

$$
f(y) = \sum_{i=0}^{k-1} f^{(i)}(x) \frac{(y-x)^i}{i!} + f^{(k)}(z) \frac{(y-x)^k}{k!}
$$

 C^k is the set of all functions which are k-times differentiable and whose kth derivative is continuous.

When $f^{(k)} \in C^k$,

$$
f(y) = \sum_{i=0}^{k} f^{(i)}(x) \frac{(y-x)^i}{i!} + o(1) \frac{(y-x)^k}{k!}
$$

Therefore, we can ignore the last term if x is close to y .

2 Multivariate Calculus

Definition 1. Let $f : \mathbb{R}^m \to \mathbb{R}^n$ be a function and $y = f(x)$. Then the Jacobian of y $w.r.t. x is an n by m matrix where$

$$
\left(\frac{\partial y}{\partial x}\right)_{i,j} = \frac{\partial y_i}{\partial x_j}
$$

Theorem 1 (Chain rule). Let $y = f(x)$ and $z = g(y)$. Then

$$
\frac{\partial z}{\partial x} = \left(\frac{\partial z}{\partial y}\right) \left(\frac{\partial y}{\partial x}\right)
$$

Definition 2. For $f : \mathbb{R}^d \mapsto \mathbb{R}$, the gradient of f, denoted as ∇_f , is a d-dimensional vector defined as

$$
\nabla_f(x) = \left[\frac{\partial f(x)}{\partial x_i}\right]_{i=1}^d
$$

For multivariate functions, $f \in C^1$ iff ∇_f exists and all components are continuous. Note that [differentiability does not imply](https://calculus.subwiki.org/wiki/Derivative_of_differentiable_function_need_not_be_continuous) C_1 .

Definition 3. For $f : \mathbb{R}^d \to \mathbb{R}$, the hessian of f, denoted as H_f , is a d by d matrix defined as

$$
H_f(x)_{i,j} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}
$$

For multivariate function, $f \in C^2$ iff H_f exists and all its entries are continuous.

Theorem 2 (Proof omitted). When $f \in C^2$, H_f is symmetric.

3 Multivariate Taylor Series

Let $g(t) = f(x + tu)$, where $t \in \mathbb{R}$ and $x, u \in \mathbb{R}^d$.

Theorem 3.

 $g'(t) = \nabla_f(x+tu)$ T_u (when $f \in C^1$, by chain rule) $g''(t) = u^T H_f(x+tu)u$ (when $f \in C$ 2)

Theorem 4. $f \in C^1 \implies g \in C^1$

Theorem 5. If $f \in C^1$ and y is close to x,

$$
f(y) = f(x) + \nabla_f(x)^T (y - x) + o(||y - x||)
$$

Proof. Let $g(t) = f(x + tu)$ and let $u = y - x$ be small. By applying univariate Taylor series on q at 0, we get

$$
g(1) = g(0) + g'(\alpha), \text{ where } \alpha \in [0, 1]
$$

\n
$$
\Rightarrow f(x+u) = f(x) + \nabla_f (x + \alpha u)^T u
$$

\n
$$
\Rightarrow f(x+u) = f(x) + (\nabla_f (x) + o(1))^T u \qquad (\nabla_f \text{ is continuous and } u \text{ is small})
$$

\n
$$
\Rightarrow f(y) = f(x) + \nabla_f (x)^T (y - x) + o(||y - x||)
$$

 \Box

 \Box

Theorem 6. If $f \in C^2$ and y is close to x,

$$
f(y) = f(x) + \nabla_f(x)^T (y - x) + \frac{1}{2} (y - x)^T H_f(x) (y - x) + o(||y - x||^2)
$$

Proof. Similar to previous theorem.