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1 Divide in half and Conquer

We will look at recurrence relations of the form:

fmy=2f (|5]) +9tw)

fmy=2f (|5]) +90m)
s =1([5]) + 7 (I5]) o

Here f and ¢ are functions from N to N (N = {0,1,...}). We define the recurrence
relations only for n > 2. Therefore, f(0) and f(1) are boundary values. (The recurrence
relations can be made to hold true for n = 0 and n = 1 as well, for example, by setting

f(0) = f(1) = g(0) = g(1) = 0),
We will assume that ¢ is non-negative and monotonic and 0 < f(0) < f(1).

We will find an exact closed-form solution for f and simple lower and upper bounds on

f.

1.1 Mathematical background

Lemma 1.
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Definition 1. lgz = log,(x)
Lemma 2. n € N

Vn>1,|lgn] =[lg(n+1)] — 1
Lemma 3. n,k € N

Den,2) = k=|lgn
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1.2 Type 1: f(n)=2f(|%]) +9(n)

Theorem 5 (Monotonicity). i <j = f(i) < f(j)



Proof. Use induction and monotonicity of g:
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Theorem 6. Vk > 0:
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Set k = [lgn] in the above theorem to get
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1.3 Type 2: f(n) =2f([%2]) + 9(n)

Theorem 7 (Monotonicity). i < j = f(i) < f(j)

Proof. Use induction and monotonicity of g

Theorem 8. Vk > 0:

jor- 21 (1) + £ 20 (2]
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Set k = [lgn] in the above theorem to get

[lgn]—1

foy =2+ 30 2 (|5])

1.4 Type 3: f(n)=f([5]) +f([5])
Theorem 9 (Monotonicity). i < j = f(i) < f(j)

Proof. Use induction and monotonicity of g
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We will also look at a special instance of this recurrence where g(n) =n—1and f(1) = 0.

(This is the recurrence for the number of comparisons in merge sort)



1.4.1 Weak bounds

Let

fim =24t ([3]) + ot

fulm) =264 (|5 ]) +900)
where fi(0) = f(0) = fu(0) and fi(1) = f(1) = fu(1).
Theorem 10. Vn > 0, fi(n) < f(n) < fu(n)

Proof. Use induction and monotonicity of f:

i —s =2 ¢ ([5]) = # (5] + [ (151) - ([5))
fut =5 =28 ([5]) = ([5D)] + [ (151) =+ ([])]

Therefore, |lgn] (n+1) —2n+2 < f(n) < [lgn] (n —1).



1.4.2 Exact solution

The exact solution is based on [1]. This approach requires the recurrence to hold at n = 0
and n = 1. Therefore, f(0) = —g(0) = —g(1).

Extend the domain of f and g by linear interpolation:
fla) = =L} f(lz]) +{z}f(l2] +1)

g(x) = (1 —=A{a})g(l=]) + {z}g(lz] + 1)
where {z} =2 — [z].

Theorem 11. Vz > 0, f(x) = 2f(%) + g(x)
Proof. Let n = |z| and h = {x}.

f@) =@ =h)f(n)+hf(n+1)
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where ‘%’ is the remainder operator (n%k =n —k [%]).
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Theorem 12.
=1 () + £2a (2)
i=0

Let’s consider the special instance of this recurrence:

(n) n—1 n>1
n) =
J 0 n=0

Also assume f(1) = 0. Therefore, f(0) = f(1) = ¢g(0) = g(1) = 0.

After linear interpolation, we get

g(:c):{x_l z>1

0 0<zr<1

and f(x) =0 when 0 < x < 1.
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