
Recurrence Relations

Eklavya Sharma

Contents

1 Divide in half and Conquer 2
1.1 Mathematical background . 2
1.2 Type 1 . 2
1.3 Type 2 . 3
1.4 Type 3 . 3

1.4.1 Weak bounds . 4
1.4.2 Exact solution . 5

1

1 Divide in half and Conquer

We will look at recurrence relations of the form:

f(n) = 2f
(⌊n

2

⌋)
+ g(n)

f(n) = 2f
(⌈n

2

⌉)
+ g(n)

f(n) = f
(⌊n

2

⌋)
+ f

(⌈n
2

⌉)
+ g(n)

Here f and g are functions from N to N (N = {0, 1, . . .}). We define the recurrence
relations only for n ≥ 2. Therefore, f(0) and f(1) are boundary values. (The recurrence
relations can be made to hold true for n = 0 and n = 1 as well, for example, by setting
f(0) = f(1) = g(0) = g(1) = 0).

We will assume that g is non-negative and monotonic and 0 ≤ f(0) ≤ f(1).

We will find an exact closed-form solution for f and simple lower and upper bounds on
f .

1.1 Mathematical background

Lemma 1.

∀a, b ∈ N,
⌈a
b

⌉
=

⌊
a− 1

b

⌋
+ 1

Definition 1. lg x = log2(x)

Lemma 2. n ∈ N

∀n ≥ 1, ⌊lg n⌋ = ⌈lg(n+ 1)⌉ − 1

Lemma 3. n, k ∈ N

n

2k
∈ [1, 2) ⇐⇒ k = ⌊lg n⌋

n

2k
∈
(
1

2
, 1

]
⇐⇒ k = ⌈lg n⌉

Lemma 4. n ∈ N

2⌊lgn⌋ ∈
[
n+ 1

2
, n

]
2⌈lgn⌉ ∈ [n, 2(n− 1)]

1.2 Type 1: f(n) = 2f
(⌊

n
2

⌋)
+ g(n)

Theorem 5 (Monotonicity). i ≤ j =⇒ f(i) ≤ f(j)

2

Proof. Use induction and monotonicity of g:

f(n) = 2f
(⌊n

2

⌋)
+ g(n) ≥ 2f

(⌊
n− 1

2

⌋)
+ g(n− 1) = f(n− 1)

Theorem 6. ∀k ≥ 0:

f(n) = 2kf
(⌊ n

2k

⌋)
+

k−1∑
i=0

2ig
(⌊ n

2i

⌋)

Set k = ⌊lg n⌋ in the above theorem to get

f(n) = 2⌊lgn⌋f(1) +

⌊lgn⌋−1∑
i=0

2ig
(⌊ n

2i

⌋)

1.3 Type 2: f(n) = 2f
(⌈

n
2

⌉)
+ g(n)

Theorem 7 (Monotonicity). i ≤ j =⇒ f(i) ≤ f(j)

Proof. Use induction and monotonicity of g

Theorem 8. ∀k ≥ 0:

f(n) = 2kf
(⌈ n

2k

⌉)
+

k−1∑
i=0

2ig
(⌈ n

2i

⌉)

Set k = ⌈lg n⌉ in the above theorem to get

f(n) = 2⌈lgn⌉f(1) +

⌈lgn⌉−1∑
i=0

2ig
(⌈ n

2i

⌉)

1.4 Type 3: f(n) = f
(⌊

n
2

⌋)
+ f

(⌈
n
2

⌉)
+ g(n)

Theorem 9 (Monotonicity). i ≤ j =⇒ f(i) ≤ f(j)

Proof. Use induction and monotonicity of g

We will also look at a special instance of this recurrence where g(n) = n−1 and f(1) = 0.
(This is the recurrence for the number of comparisons in merge sort)

3

1.4.1 Weak bounds

Let

fl(n) = 2fl

(⌊n
2

⌋)
+ g(n)

fu(n) = 2fu

(⌈n
2

⌉)
+ g(n)

where fl(0) = f(0) = fu(0) and fl(1) = f(1) = fu(1).

Theorem 10. ∀n ≥ 0, fl(n) ≤ f(n) ≤ fu(n)

Proof. Use induction and monotonicity of f :

f(n)− fl(n) = 2
[
f
(⌊n

2

⌋)
− fl

(⌊n
2

⌋)]
+
[
f
(⌈n

2

⌉)
− f

(⌊n
2

⌋)]
fu(n)− f(n) = 2

[
fu

(⌈n
2

⌉)
− f

(⌈n
2

⌉)]
+
[
f
(⌈n

2

⌉)
− f

(⌊n
2

⌋)]

For g(n) = n− 1 and f(1) = 0, we get

fl(n) =

⌊lgn⌋−1∑
i=0

2i
(⌊ n

2i

⌋
− 1

)
=

⌊lgn⌋−1∑
i=0

2i
(⌈

n+ 1

2i

⌉
− 2

)

≥
⌊lgn⌋−1∑

i=0

2i
(
n+ 1

2i
− 2

)
= ⌊lg n⌋ (n+ 1)− 2⌊lgn⌋+1 + 2

≥ ⌊lg n⌋ (n+ 1)− 2n+ 2

fu(n) =

⌈lgn⌉−1∑
i=0

2i
(⌈ n

2i

⌉
− 1

)
=

⌈lgn⌉−1∑
i=0

2i
(⌊

n− 1

2i

⌋)

≤
⌈lgn⌉−1∑

i=0

2i
(
n− 1

2i

)
= ⌈lg n⌉ (n− 1)

Therefore, ⌊lg n⌋ (n+ 1)− 2n+ 2 ≤ f(n) ≤ ⌈lg n⌉ (n− 1).

4

1.4.2 Exact solution

The exact solution is based on [1]. This approach requires the recurrence to hold at n = 0
and n = 1. Therefore, f(0) = −g(0) = −g(1).

Extend the domain of f and g by linear interpolation:

f(x) = (1− {x})f(⌊x⌋) + {x}f(⌊x⌋+ 1)

g(x) = (1− {x})g(⌊x⌋) + {x}g(⌊x⌋+ 1)

where {x} = x− ⌊x⌋.

Theorem 11. ∀x ≥ 0, f(x) = 2f(x
2
) + g(x)

Proof. Let n = ⌊x⌋ and h = {x}.

f(x) = (1− h)f(n) + hf(n+ 1)

= (1− h)
(
f
(⌊n

2

⌋)
+ f

(⌈n
2

⌉)
+ g(n)

)
+ h

(
f

(⌊
n+ 1

2

⌋)
+ f

(⌈
n+ 1

2

⌉)
+ g(n+ 1)

)
= g(x) + (1− h)

(
f
(⌊n

2

⌋)
+ f

(⌈n
2

⌉))
+ h

(
f
(⌈n

2

⌉)
+ f

(⌊n
2
+ 1

⌋))
= g(x) + f

(⌊n
2

⌋
+ h

)
+ f

(⌈n
2

⌉)
⌊x
2

⌋
=

⌊
n+ h

2

⌋
=

⌊n
2

⌋
{x

2

}
=

n+ h

2
−

⌊n
2

⌋
=

(n%2) + h

2

where ‘%’ is the remainder operator
(
n%k = n− k

⌊
n
k

⌋)
.

1−
{x

2

}
= 1− (n%2) + h

2
=

(1− n%2) + (1− h)

2

2f
(x
2

)
= 2

(
1−

{x

2

})
f
(⌊x

2

⌋)
+ 2

{x

2

}
f
(⌊x

2

⌋
+ 1

)
= ((1− n%2) + (1− h))f

(⌊n
2

⌋)
+ (n%2 + h)f

(⌊n
2

⌋
+ 1

)
= f

(⌊n
2

⌋
+ h

)
+ (1− n%2)f

(⌊n
2

⌋)
+ (n%2)f

(⌊n
2

⌋
+ 1

)
= f

(⌊n
2

⌋
+ h

)
+

{
f
(⌊

n
2

⌋)
n%2 = 0

f
(⌊

n
2

⌋
+ 1

)
n%2 = 1

= f
(⌊n

2

⌋
+ h

)
+ f

(⌈n
2

⌉)
= f(x)− g(x)

5

Theorem 12.

f(n) = 2kf
(n

2k

)
+

k−1∑
i=0

2ig
(n

2i

)
Let’s consider the special instance of this recurrence:

g(n) =

{
n− 1 n ≥ 1

0 n = 0

Also assume f(1) = 0. Therefore, f(0) = f(1) = g(0) = g(1) = 0.

After linear interpolation, we get

g(x) =

{
x− 1 x ≥ 1

0 0 ≤ x ≤ 1

and f(x) = 0 when 0 ≤ x ≤ 1.

k = ⌊lg n⌋+ 1 =⇒ n

2k
∈
[
1

2
, 1

)
=⇒ f

(n

2k

)
= 0

f(n) =

⌊lgn⌋∑
i=0

2i
(n

2i
− 1

)
= n(⌊lg n⌋+ 1)− 2⌊lgn⌋+1 + 1

∈ n ⌊lg n⌋ − [0, n− 1]

k = ⌈lg n⌉ =⇒ n

2k
∈
(
1

2
, 1

]
=⇒ f

(n

2k

)
= 0

f(n) =

⌈lgn⌉−1∑
i=0

2i
(n

2i
− 1

)
= n ⌈lg n⌉ − 2⌈lgn⌉ + 1

References

[1] Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai. Exact and asymptotic
solutions of a divide-and-conquer recurrence dividing at half: Theory and appli-
cations. ACM Trans. Algorithms, 13(4):47:1–47:43, October 2017. URL: http:

//doi.acm.org/10.1145/3127585, doi:10.1145/3127585.

6

http://doi.acm.org/10.1145/3127585
http://doi.acm.org/10.1145/3127585
https://doi.org/10.1145/3127585

	1 Divide in half and Conquer
	1.1 Mathematical background
	1.2 Type 1
	1.3 Type 2
	1.4 Type 3
	1.4.1 Weak bounds
	1.4.2 Exact solution

