Chapter 2: Real numbers

1 Groups

Definition 1 (Group). Let G be a non-empty set and $\circ : G \times G \to G$ be a binary operator. Then (G, \circ) is a group iff all of the following hold:

- 1. Associativity: $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in G$.
- 2. Identity exists: $\exists e \in G$ such that $\forall a \in G$, $e \circ a = a \circ e = a$. Such an e is called an identity of (G, \circ) . We can prove that the identity is unique.
- 3. Inverses exist: Let e be an identity of (G, \circ) . Then $\forall a \in G$, $(\exists \ell \in G, \ell \circ a = e)$ and $(\exists r \in G, a \circ r = e)$. ℓ is called a left inverse of a. r is called a right inverse of a.

 (G, \circ) is called symmetric, commutative, or abelian iff $\forall a \in G, \forall b \in G, a \circ b = b \circ a$.

Lemma 1. In a group (G, \circ) , the identity is unique and each element has a unique inverse.

Proof. Let e_1 and e_2 be identities of (G, \circ) . Then $e_1 \circ e_2 = e_1$, since e_2 is an identity, and $e_2 \circ e_1 = e_2$, since e_1 is an identity. Hence, $e_1 = e_2$.

Let ℓ be a left inverse and r be a right inverse of $a \in G$. Then

$$\ell = \ell \circ e = \ell \circ (a \circ r) = (\ell \circ a) \circ r = e \circ r = r.$$

Hence, every left inverse equals every right inverse. Hence, they are all equal. \Box

Definition 2 (Standard operators). If we use + as a group operator, we denote identity as 0 and inverse of g as -g. If we use \times as a group operator, we denote identity as 1 and inverse of g as g^{-1} . a - b := a + (-b). $a/b := ab^{-1}$.

Definition 3. Let (G, \times) be a group. Then for any $n \in \mathbb{Z}$ and any $g \in G$, define

$$g^{n} = \begin{cases} g \times g \times \ldots \times g \ (n \ times) & if \ n > 0 \\ 1 & if \ n = 0 \\ g^{-1} \times g^{-1} \times \ldots \times g^{-1} \ (-n \ times) & if \ n < 0 \end{cases}$$

Lemma 2 (Basic properties). Let (G, \cdot) be a group. Let $a, b \in G$ and $m, n \in \mathbb{Z}$.

- 1. $(ab)^{-1} = b^{-1}a^{-1}$.
- 2. $(a^{-1})^{-1} = a$.
- 3. $a^m a^n = a^{m+n}$.

4.
$$(a^m)^n = a^{mn}$$
.

5. If G is symmetric, $(ab)^n = a^n b^n$.

2 Fields

Definition 4 (Field). $(F, +, \times)$ is a field iff it satisfies all of the following:

- 1. (F, +) is a symmetric group. It's identity is denoted as 0.
- 2. $(F \{0\}, \times)$ is a symmetric group. It's identity is denoted as 1.
- 3. Distributivity: a(b+c) = ab + ac and (a+b)c = ac + bc.

Lemma 3 (Basic properties). Let $(F, +, \times)$ be a field. Let $a, b \in F$.

1. a0 = 0a = 0. 2. a(-b) = (-a)b = -(ab). 3. (-a)(-b) = ab. 4. $ab = 0 \iff (a = 0 \text{ or } b = 0)$. 5. $(-a)^{-1} = -a^{-1}$.

Proof sketches.

- 1. a0 = a(0+0) = a0 + a0.
- 2. 0 = a0 = a(b + (-b)) = ab + a(-b).

3.
$$(-a)(-b) = a(-(-b)) = ab$$
.

4. Suppose $a \neq 0$. Then $ab = 0 \implies b = a^{-1}0 = 0$.

5.
$$(-1)(-1) = 1$$
, so $(-1)^{-1} = -1$. $(-a)^{-1} = ((-1)a)^{-1} = (-1)^{-1}a^{-1} = -a^{-1}$.

3 Partial Orders

Definition 5 (Partial and total orders). Let L be a set and let \leq be a binary predicate over $L \times L$. Then (L, \leq) is called a partial order (aka poset) iff all of the following hold:

- 1. Reflexivity: $\forall a \in L, a \leq a$.
- 2. Anti-symmetry: $a \leq b$ and $b \leq a \implies a = b$.
- 3. Transitivity: $a \leq b$ and $b \leq c \implies a \leq c$.

Additionally, if $\forall a, b \in L$, we have $a \leq b$ or $b \leq a$, then (L, \leq) is called a total order. $a < b \iff (a \leq b \text{ and } a \neq b)$. $a \geq b \iff b \leq a$. $a > b \iff b < a$.

Definition 6 (Upper and lower bound). Let (L, \leq) be a poset. Let $S \subseteq L$.

1. $u \in L$ is an upper bound for S iff $s \leq u$ for all $s \in S$. S is called upper-bounded iff an upper bound exists for S.

- 2. $u \in L$ is a least upper bound or supremum for S (denoted sup(S)) iff u is an upper bound for S and for every upper bound v of S, we have $u \leq v$.
- 3. $u \in L$ is a lower bound for S iff $u \leq s$ for all $s \in S$. S is called lower-bounded iff a lower bound exists for S.
- 4. $u \in L$ is a greatest lower bound or infimum for S (denoted $\inf(S)$) iff u is a lower bound for S and for every lower bound v of S, we have $v \leq u$.
- 5. S is called bounded iff it has a lower bound and an upper bound.

Lemma 4. $\sup(S)$, if it exists, is unique. $\inf(S)$, if it exists, is unique.

4 Ordered Field

Definition 7 (Ordered field). Let $(F, +, \times)$ be a field. $(F, +, \times, \leq)$ is an ordered field iff all of the following hold:

- 1. (F, \leq) is a total order.
- 2. $a \le b \implies (\forall c \in F, a + c \le b + c).$
- 3. $a \ge 0$ and $b \ge 0 \implies ab \ge 0$.

Lemma 5 (Strict inequalities). Let $(F, +, \times, \leq)$ be an ordered field. Then

- 1. a < b and $b < c \implies a < c$.
- 2. $a < b \implies (\forall c \in F, a + c < b + c).$
- 3. a > 0 and $b > 0 \implies ab > 0$.

Definition 8 (Field with positives (non-standard terminology)). Let $(F, +, \times)$ be a field. Let $P \subseteq F$. $(F, +, \times, P)$ is called a field with positives iff

- 1. $a, b \in P \implies a + b \in P$.
- 2. $a, b \in P \implies ab \in P$.
- 3. $\forall a \in F$, exactly one of these is true: $a = 0, a \in P, -a \in P$.

The following two results state that either of Definitions 7 and 8 could be used to define the other.

Lemma 6. Let $(F, +, \times, P)$ be a field with positives. Let $a \leq b :\iff (b - a \in P \text{ or } b = a)$. Then $(F, +, \times, \leq)$ is an ordered field.

Lemma 7. Let $(F, +, \times, \leq)$ be an ordered field. Let $P := \{x \in F : x > 0\}$. Then $(F, +, \times, P)$ is a field with positives.

Lemma 8. Let $(F, +, \times, \leq)$ be an ordered field.

1. $a_1 \leq b_1 \text{ and } a_2 \leq b_2 \implies a_1 + a_2 \leq b_1 + b_2$.

2. $a^2 \ge 0$ and $(a^2 = 0 \iff a = 0)$. 3. 1 > 0. 4. $ab > 0 \implies (a > 0 \text{ and } b > 0) \text{ or } (a < 0 \text{ and } b < 0)$. 5. $a > 0 \implies a^{-1} > 0$.

Lemma 9. $(\forall \epsilon > 0, a \leq \epsilon) \implies a \leq 0.$

Definition 9. $|a| := \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a < 0 \end{cases}$

Lemma 10. Let $(F, +, \times, \leq)$ be an ordered field.

1. $|a| \ge 0 \text{ and } (|a| = 0 \iff a = 0).$ 2. |-a| = |a|.3. $|a| \ge a \text{ and } |a| \ge -a.$ 4. Let $c \ge 0$. Then $|a| \le c \iff -c \le a \le c.$ 5. $-|a| \le a \le |a|.$ 6. |ab| = |a||b|.7. For $a \ne 0$, $|a^{-1}| = |a|^{-1}.$

Lemma 11 (Triangle inequalities). $||a| - |b|| \le |a + b| \le |a| + |b|$.

Proof. $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$. Add these to get $-(|a|+|b|) \le a+b \le |a|+|b|$. By Lemma 10.4, we get $|a+b| \le |a|+|b|$.

By previous result, $|a| = |(a+b) + (-b)| \le |a+b| + |b|$, so $|a| - |b| \le |a+b|$. Also, $|b| = |(a+b)+(-a)| \le |a+b|+|a|$, so $-|a+b| \le |a|-|b|$. Hence, $-|a+b| \le |a|-|b| \le |a+b|$. By Lemma 10.4, we get $||a| - |b|| \le |a+b|$.

Definition 10. Define max and min as

$$\max(x,y) := \begin{cases} x & \text{if } x \ge y \\ y & \text{if } y > x \end{cases} \qquad \min(x,y) := \begin{cases} y & \text{if } x \ge y \\ x & \text{if } y > x \end{cases}$$

Lemma 12. max and min are symmetric and associative, i.e., $\max(a, b) = \max(b, a)$, $\max(\max(a, b), c) = \max(a, \max(b, c))$. $\min(a, b) = \min(b, a)$, and $\min(\min(a, b), c) = \min(a, \min(b, c))$.

5 Supremum, Infimum, and Real Numbers

Definition 11. The set of real numbers is an ordered field $(\mathbb{R}, +, \times, \leq)$ in which every set with an upper bound has a supremum. (In fact, such an ordered field is unique, but proving that is beyond the scope of the course/book.)

Lemma 13. Let $S \subseteq \mathbb{R}$ and $S' = \{-x : x \in S\}$. Then $\inf(S) = -\sup(S')$ and $\sup(S) = -\inf(S')$.

Lemma 14. Let $S \subseteq \mathbb{R}$. Then for any $\alpha \in \mathbb{R}$, $(\forall x \in S, x \leq \alpha) \iff \sup(S) \leq \alpha$, and $(\forall x \in S, x \geq \alpha) \iff \inf(S) \geq \alpha$.

Lemma 15. Let $A, B \subseteq \mathbb{R}$. Then

1. $\sup(A \cup B) = \max(\sup(A), \sup(B))$ and $\inf(A \cup B) = \min(\inf(A), \inf(B))$.

2. $A \subseteq B \implies \inf(B) \le \inf(A) \le \sup(A) \le \sup(B)$.

Definition 12. Let $f: D \to \mathbb{R}$. Then $\sup_{x \in D} f(x) := \sup(f(D))$.

Lemma 16 (Archimedian Properties, floor, and ceil). Let $x \in \mathbb{R}_{>0}$. Then

- 1. $\exists n \in \mathbb{N}$ such that x < n.
- 2. $\exists n \in \mathbb{N} \text{ such that } 1/n < x.$
- 3. There is a unique $n \in \mathbb{N} \cup \{0\}$ such that $n \leq x < n+1$. (We denote n as |x|.)
- 4. There is a unique $n \in \mathbb{N}$ such that $n 1 < x \leq n$. (We denote n as $\lceil x \rceil$.)
- *Proof.* 1. Suppose this is not true. Then x is an upper-bound of N. By completeness property of \mathbb{R} , $u := \sup(\mathbb{N})$ exists. Hence, u 1 is not an upper-bound of N, and so $\exists m \in \mathbb{N}$ such that u 1 < m. Hence, $u \leq m + 1$. This is a contradiction, since $m + 1 \in \mathbb{N}$.
 - 2. $\exists n \in \mathbb{N}$ such that n > 1/x. Hence, 1/n < x.
 - 3. Let $T := \{m \in \mathbb{N} : x < m\}$. By part 1, $T \neq \emptyset$. By well-ordering of \mathbb{N} , T has a least element t. Then $t 1 \notin T$, so $t 1 \leq x$. Hence, $t 1 \leq x < t$. Set n = t 1.
 - 4. Let $T := \{m \in \mathbb{N} : x \leq m\}$. By part 1, $T \neq \emptyset$. By well-ordering of \mathbb{N} , T has a least element n. Then $n 1 \notin T$, so n 1 < x.

Lemma 17 (\mathbb{Q} is dense in \mathbb{R}). Let $x, y \in \mathbb{R}$ and x < y. Then $\exists z \in \mathbb{Q}$ such that x < z < y.

Proof. By Archimedian property, $\exists n \in \mathbb{N}$ such that 1/n < y - x. Then nx + 1 < y. Let $k := \lfloor nx \rfloor + 1$. Then $nx < \lfloor nx \rfloor + 1 \le nx + 1 < ny$. Hence, x < k/n < y.

Lemma 18 (Principle of iterated suprema). Let X and Y be non-empty sets and $f : X \times Y \to \mathbb{R}$ be upper-bounded. Then

$$\sup_{(x,y)\in X\times Y} f(x,y) = \sup_{x\in X} \sup_{y\in Y} f(x,y) = \sup_{y\in Y} \sup_{x\in X} f(x,y).$$

Proof. We will prove the first equality, since the second's proof is similar. Let

$$g(x) := \sup_{y \in Y} f(x, y) \qquad \qquad \alpha := \sup_{x \in X} g(x) \qquad \qquad \beta := \sup_{(x,y) \in X \times Y} f(x, y)$$

We need to show that $\alpha = \beta$. For any $z \in \mathbb{R}$,

$$\beta \leq z$$

$$\iff \forall (x, y) \in X \times Y, f(x, y) \leq z$$

$$\iff \forall x \in X, \forall y \in Y, f(x, y) \leq z$$

$$\iff \forall x \in X, g(x) \leq z$$

$$\iff \alpha \leq z.$$

Lemma 19. Let X and Y be non-empty sets and $f : X \times Y \to \mathbb{R}$ be bounded. Then $\alpha \leq \beta$, where

$$\alpha := \sup_{x \in X} \inf_{y \in Y} f(x, y), \qquad \qquad \beta := \inf_{x \in X} \sup_{y \in Y} f(x, y).$$

(Hint: Consider the special case where X and Y are finite, and then generalize.)

Proof. Pick any $\epsilon > 0$. Then $\exists x^* \in X$ such that $\inf_{y \in Y} f(x^*, y) \ge \alpha - \epsilon$, and $\exists y^* \in Y$ such that $\sup_{x \in X} f(x, y^*) \le \beta + \epsilon$. Hence,

$$\alpha - \epsilon \le \inf_{y \in Y} f(x^*, y) \le f(x^*, y^*) \le \sup_{x \in X} f(x, y^*) \le \beta + \epsilon.$$

Hence, $\forall \epsilon > 0$, we get $\alpha - \beta \leq 2\epsilon$. Hence, $\alpha - \beta \leq 0$.

6 Intervals

Definition 13 (Interval). Let $a, b \in \mathbb{R}$, such that $a \leq b$. The following are called closed intervals:

- 1. $[a,b] := \{x \in \mathbb{R} : a \le x \le b\}.$
- 2. $[a, \infty) := \{x \in \mathbb{R} : a \le x\}.$
- 3. $(-\infty, b] := \{x \in \mathbb{R} : x \le b\}.$

The following are called open intervals:

- 1. $(a,b) := \{x \in \mathbb{R} : a < x < b\}.$
- 2. $(a, \infty) := \{x \in \mathbb{R} : a < x\}.$
- 3. $(-\infty, b) := \{x \in \mathbb{R} : x < b\}.$

The following are called half-open intervals:

1. $[a,b) := \{x \in \mathbb{R} : a \le x < b\}.$ 2. $(a,b] := \{x \in \mathbb{R} : a < x \le b\}.$ $(-\infty,\infty) := \mathbb{R}$ is both an open and closed interval.

Lemma 20. Let $S \subseteq \mathbb{R}$ be a non-empty set. Then S is an interval iff $\forall x \in S, \forall y \in S, (x < y \implies [x, y] \subseteq S)$.

Proof sketch. Let $a := \inf(S)$ and $b := \sup(S)$. (Let $a := -\infty$ if S is not lower bounded, and $b := \infty$ if S is not upper bounded.)

Pick any $z \in (a, b)$. Since z is not a lower or upper bound of S, $\exists x \in S$ such that x < z, and $\exists y \in S$ such that y < z. Then $z \in [x, y]$ and $[x, y] \subseteq S$, so $z \in S$. Hence, $(a, b) \subseteq S$. Also, $S \subseteq [a, b]$ (where $[a, \infty] := [a, \infty)$ and $[-\infty, b] := (-\infty, b]$).

Lemma 21. Let $[a_i]_{i \in \mathbb{N}}$ and $[b_i]_{i \in \mathbb{N}}$ be infinite sequences and $I_n := [a_n, b_n]$ for all $n \in \mathbb{N}$. Then

6.1 Nested Intervals

Let $[a_n]_{n\in\mathbb{N}}$ and $[b_n]_{n\in\mathbb{N}}$ be two sequences of real numbers such that $a_i \leq a_{i+1} \leq b_i$ for all $i \in \mathbb{N}$. Let $I_n := [a_n, b_n]$ for $n \in \mathbb{N}$. Let $I := \bigcap_{n \in \mathbb{N}} I_n$.

 $\forall n \in \mathbb{N}, a_1 \leq a_n \leq b_n \leq b_1$. Hence, sequences $[a_n]_{n \in \mathbb{N}}$ and $[b_n]_{n \in \mathbb{N}}$ are bounded. Let $a := \sup_{n \in \mathbb{N}} a_n$ and $b := \inf_{n \in \mathbb{N}} b_n$. Let $\ell := \inf_{n \in \mathbb{N}} (b_n - a_n)$ ($\ell \geq 0$, since $b_n - a_n \geq 0$ for all $n \in \mathbb{N}$).

Lemma 22. I = [a, b].

Proof. Let $z \in \mathbb{R}$.

$$z \in [a, b]$$

$$\iff (\forall n \in \mathbb{N}, a_n \le z) \text{ and } (\forall n \in \mathbb{N}, b_n \le z)$$

$$\iff (\forall n \in \mathbb{N}, a_n \le z \le b_n)$$

$$\iff (\forall n \in \mathbb{N}, z \in I_n)$$

$$\iff z \in I.$$

Lemma 23. $\ell := b - a$.

Proof.

$$(\forall n \in \mathbb{N}, a_n \leq a) \text{ and } (\forall n \in \mathbb{N}, b \leq b_n)$$

$$\implies (\forall n \in \mathbb{N}, a_n \leq a \text{ and } b \leq b_n)$$

$$\implies (\forall n \in \mathbb{N}, b - a \leq b_n - a_n)$$

$$\implies b - a \leq \inf_{n \in \mathbb{N}} (b_n - a_n) = \ell.$$

Let $\epsilon > 0$. Then $\exists p \in \mathbb{N}$ such that $a_p \geq a - \epsilon$, and $\exists q \in \mathbb{N}$ such that $b_q \leq b + \epsilon$. Let $r := \max(p, q)$. Then

 $a - \epsilon \le a_p \le a_r \le b_r \le b_q \le b + \epsilon.$

Hence,

$$\ell \le b_r - a_r \le (b + \epsilon) - (a - \epsilon) = (b - a) + 2\epsilon.$$

Since this is true for all $\epsilon > 0$, we get $\ell \leq b - a$.