Chapter 2: Real numbers

1 Groups

Definition 1 (Group). Let G be a non-empty set and o : GXG — G be a binary operator.
Then (G, 0) is a group iff all of the following hold:

1. Associativity: ao (boc) = (aob)oc forall a,b,c € G.

2. Identity exists: e € G such that Va € G, eoa =aoe = a. Such an e is called an
identity of (G,0). We can prove that the identity is unique.

3. Inverses exist: Let e be an identity of (G,0). ThenVa € G, (3¢ € G,loa =¢€) and
(Ir € G,aor =e). { is called a left inverse of a. r is called a right inverse of a.

(G, 0) is called symmetric, commutative, or abelian iff Va € G, Vb € G, aob=boa.
Lemma 1. In a group (G,o), the identity is unique and each element has a unique

nuverse.

Proof. Let e; and ey be identities of (G, 0). Then e o ey = ey, since e, is an identity, and
€2 0 €1 = €9, since e; is an identity. Hence, e; = es.
Let ¢ be a left inverse and r be a right inverse of a € G. Then
{=loe="lo(aor)=(loa)or=ecor=r.
Hence, every left inverse equals every right inverse. Hence, they are all equal. O]

Definition 2 (Standard operators). If we use + as a group operator, we denote identity
as 0 and inverse of g as —g. If we use X as a group operator, we denote identity as 1
and inverse of g as g~'. a —b:=a+ (=b). a/b:=ab~l.

Definition 3. Let (G, x) be a group. Then for anyn € Z and any g € G, define
gXxXgXx...xg(n times) ifn>0
g =191 ifn=0.
g xgtx...xgt(—n times) ifn<0

Lemma 2 (Basic properties). Let (G,-) be a group. Let a,b € G and m,n € Z.
(ab)™t =b"ta"t.

(e =a.

~
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3. ama"™ = o™,
4. (a™)" = a™".
5]

. f G is symmetric, (ab)™ = a™b".



2 Fields

Definition 4 (Field). (F,+, X) is a field iff it satisfies all of the following:
1. (F,+) is a symmetric group. It’s identity is denoted as 0.
2. (F — {0}, x) is a symmetric group. It’s identity is denoted as 1.
3. Distributivity: a(b+ ¢) = ab+ ac and (a + b)c = ac + bc.

Lemma 3 (Basic properties). Let (F,+, x) be a field. Let a,b € F.

1. a0 = 0a = 0.

2. a(=b) = (—a)b = —(ab)

3. (—a)(=b) = ab

4. ab=0 < (a=0 orb=0).
5. (~a)™' = —a~l.

Proof sketches.
1. a0 = a(0 +0) = a0 + a0.
2. 0=a0=a(b+ (=b)) = ab+ a(-D).
3. (—a)(=b) = a(—(=0b)) = ab.
4. Suppose a # 0. Then ab=0 = b=a"10=0.

5. (~1)(=1) = 1,50 (=1)"' = —1. (—a)"' = ((=1)a)"' = (=1)"'a~' = —a~".

3 Partial Orders

Definition 5 (Partial and total orders). Let L be a set and let < be a binary predicate
over L x L. Then (L, <) is called a partial order (aka poset) iff all of the following hold:

1. Reflezxivity: Ya € L, a < a.
2. Anti-symmetry: a < b and b<a = a =0.
3. Transitwvity: a < b andb<c¢ = a <c.

Additionally, if Ya,b € L, we have a <b or b < a, then (L,<) is called a total order.
a<b <= (a<banda#b). a>b <= b<a. a>b < b<a.

Definition 6 (Upper and lower bound). Let (L, <) be a poset. Let S C L.

1. w € L 1s an upper bound for S iff s < wu for all s € S. S is called upper-bounded
iff an upper bound exists for S.



2. uw € L is a least upper bound or supremum for S (denoted sup(S)) iff u is an upper
bound for S and for every upper bound v of S, we have u < v.

3. u € L is a lower bound for S iff u < s for all s € S. S is called lower-bounded iff
a lower bound exists for S.

4. u € L is a greatest lower bound or infimum for S (denoted inf(S)) iff u is a lower
bound for S and for every lower bound v of S, we have v < w.

5. S is called bounded iff it has a lower bound and an upper bound.

Lemma 4. sup(S), if it exists, is unique. inf(S), if it exists, is unique.

4 Ordered Field

Definition 7 (Ordered field). Let (F,+, x) be a field. (F,+, x,<) is an ordered field iff
all of the following hold:

1. (F,<) is a total order.
2.a<b = (VeeFa+c<b+c).
3. a>0andb>0 = ab> 0.

Lemma 5 (Strict inequalities). Let (F,+, x, <) be an ordered field. Then

I.a<bandb<c = a<ec.
2.a<b = (Vee Fa+c<b+c).
3. a>0andb>0 — ab> 0.

Definition 8 (Field with positives (non-standard terminology)). Let (F,+, X) be a field.
Let P C F. (F,+, x, P) is called a field with positives iff

1. a,be P — a+beP.
2. a,be P = abe P.

3. Ya € F, exactly one of these is true: a =0, a € P, —a € P.

The following two results state that either of Definitions 7 and 8 could be used to
define the other.

Lemma 6. Let (F,+, X, P) be a field with positives. Let a <b <= (b—a € P orb=
a). Then (F,4+, x,<) is an ordered field.

Lemma 7. Let (F,+, x,<) be an ordered field. Let P := {x € F : x > 0}. Then
(F,+, X, P) is a field with positives.

Lemma 8. Let (F,+, x,<) be an ordered field.

1. a1§b1 andaQSbQ — a1+a2§b1+bg.
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2.a*>0and (a* =0 < a=0).

3.1>0.

4.ab>0 = (a>0andb>0) or(a<0 andb<0).
5.0>0 = a'>0.

Lemma 9. (Ve > 0,a <€) = a <0.

a ifa>0

Definition 9. |a| := , .
—a ifa <0

Lemma 10. Let (F,+, x, <) be an ordered field.
1. |a| >0 and (Ja| =0 <= a=0).
2. | —a| =al.
3. |la] > a and |a| > —a.
4. Let ¢>0. Then |a| < ¢ <= —c<a<ec.
5. —lal <a<|al.
6. |ab|l = |al|b|.
7. Fora #0, |a7'| = |a|7".
Lemma 11 (Triangle inequalities). ||la| — [b|| < |a + b < |a| + [b].

Proof. —|a| < a < la] and —|b] < b < |b|. Add these to get —(|a|+ [b]) < a+b < |a|+ |b].
By Lemma 10.4, we get |a + b| < |a| + |b].

By previous result, |a| = |(a + b) + (=b)| < |a + b| + |b], so |a|] — [b] < |a + b|. Also,
1b| = [(a+b)+(—a)| < |a+b|+]|a|, so —|a+b| < |a|—|b|. Hence, —|a+b| < |a|—|b] < |a+Db].
By Lemma 10.4, we get ||a] — [b|| < |a + b|. O

Definition 10. Define max and min as
r ifr>y ) y ifrx>y
max(x,y) = , : min(z,y) = _ :
y ify>x r ify>x
Lemma 12. max and min are symmetric and associative, i.e., max(a,b) = max(b,a),

max(max(a,b),c) = max(a, max(b,c)). min(a,b) = min(bh,a), and min(min(a,b),c) =
min(a, min(b, c)).



5 Supremum, Infimum, and Real Numbers

Definition 11. The set of real numbers is an ordered field (R, 4+, x, <) in which every
set with an upper bound has a supremum. (In fact, such an ordered field is unique, but
proving that is beyond the scope of the course/book.)

Lemma 13. Let S C R and 8" = {—x : x € S}. Then inf(S) = —sup(S’) and
sup(S) = —inf(5").

Lemma 14. Let S C R. Then for any a € R, (Vz € S,z < o) <= sup(9) < «, and
(Vz e S,z > a) <= inf(S) > a.

Lemma 15. Let A, B CR. Then
1. sup(AU B) = max(sup(A),sup(B)) and inf(AU B) = min(inf(A), inf(B)).
2. AC B = inf(B) <inf(A) <sup(A4) < sup(B).

Definition 12. Let f: D — R. Then sup,cp f(x) := sup(f(D)).

Lemma 16 (Archimedian Properties, floor, and ceil). Let x € Ryy. Then

1. dn € N such that z < n.

2. In € N such that 1/n < z.

3. There is a unique n € NU {0} such that n <z <n+1. (We denote n as |z].)
4. There is a unique n € N such thatn — 1 <z <n. (We denote n as [z].)

Proof. 1. Suppose this is not true. Then z is an upper-bound of N. By completeness
property of R, u := sup(N) exists. Hence, u — 1 is not an upper-bound of N, and
so Im € N such that u — 1 < m. Hence, u < m + 1. This is a contradiction, since
m+1¢eN.

2. 3dn € N such that n > 1/x. Hence, 1/n < z.

3. Let T:={m € N:x <m}. By part 1, T # (). By well-ordering of N, T" has a least
element t. Thent —1¢T,sot—1<x. Hence,t—1<x <t Setn=t-—1.

4. Let T:={m € N:xz <m}. By part 1, T # (). By well-ordering of N, T" has a least
element n. Thenn —1¢ 7T, son—1< x.

]
Lemma 17 (Qis densein R). Letx,y € R and x <y. Then 3z € Q such thatx < z < y.

Proof. By Archimedian property, In € N such that 1/n < y —x. Then nx + 1 < y. Let
k:=|nz|+ 1. Then nx < [nz| +1 <nx+1 < ny. Hence, z < k/n < y. O

Lemma 18 (Principle of iterated suprema). Let X and Y be non-empty sets and f :
X XY — R be upper-bounded. Then

sup  f(z,y) = supsup f(z,y) = supsup f(z,y).
(z,y)eX XY reX yeY yeY zeX

bt



Proof. We will prove the first equality, since the second’s proof is similar. Let

g(x) :==sup f(x,y) o == sup g() B:= sup f(z,y)
yey zeX (z,y)eX XY

We need to show that a = . For any z € R,

B<z
< V(r,y) € X XY, f(x,y) <z
= Vre X, VyeY, flz,y) <=z
= VreX g(x) <z
— o < z. O

Lemma 19. Let X and Y be non-empty sets and f : X xY — R be bounded. Then

a < 3, where
a = sup inf f(x,y), = inf sup f(z,y).
xe)l?yeyf( y) f:= inf yegf( y)

(Hint: Consider the special case where X and Y are finite, and then generalize.)

Proof. Pick any € > 0. Then 32* € X such that inf ey f(z*,y) > a —¢€, and Jy* € YV
such that sup,.y f(z,y*) < S+ e. Hence,

a—e<inf f(z",y) < f(a",y") <sup f(z,y") < B+e
yey reX

Hence, Ve > 0, we get a — 8 < 2¢. Hence, a — 3 < 0. O

6 Intervals

Definition 13 (Interval). Let a,b € R, such that a < b.
The following are called closed intervals:

1. [a,b] :={r eR:a <x <b}.
2. [a,00) :={zx €R:a < zx}.
3. (—o00,b) :={zr e R:z < b}.
The following are called open intervals:
1. (a,b):={r€eR:a<x<b}.
2. (a,00) ={x € R:a <z}
3. (—o0,b) :={zreR:z < b}
The following are called half-open intervals:
1. [a,b):={z €eR:a <z <b}.
2. (a,b] :={xr €R:a <z <b}.



(—00,00) := R is both an open and closed interval.

Lemma 20. Let S C R be a non-empty set. Then S is an interval iff Vx € S,Vy €
S, (z <y = [z,y] € 9).

Proof sketch. Let a := inf(S) and b := sup(S). (Let a := —oo if S is not lower bounded,
and b := oo if S is not upper bounded.)

Pick any z € (a,b). Since z is not a lower or upper bound of S, 3z € S such that
x < z,and Jy € S such that y < z. Then z € [z,y] and [z,y] C S, so z € S. Hence,

(a,b) € S. Also, S C [a,b] (where [a, 0] := [a,00) and [—o0, b] := (—0o0, b]). O
Lemma 21. Let [a;]ien and [bi]ien be infinite sequences and I, := [an, b,] for all n € N.
Then

6.1 Nested Intervals

Let [ay]nen and [b,],en be two sequences of real numbers such that a; < a;41 < biq < b
for all i € N. Let I, := [an, b,] for n € N. Let I := Nyenly.

Vn €N, a; < a, < b, < b;. Hence, sequences [a,],en and [b,],en are bounded. Let
a 1= Sup,cy an, and b = inf, ey b,. Let ¢ := inf,en(b, — ay,) (¢ > 0, since b, — a,, > 0 for
all n € N).

Lemma 22. [ = [a,b].
Proof. Let z € R.

z € [a,b]
< (Vn € N,a, < z) and (Vn € N;b, < z2)
<~ (VneNa, <z<b,)
<~ (WneN,zel,)
<~ zecl. [

Lemma 23. ¢/ :=b —a.

Proof.

(Vn € Nyja, <a) and (Yn € N;b < b,)
— (Vn € N,a, <aand b <b,)
= (YneN,b—a<b,—ay,)
:b—agigg(bn—an)zﬁ.

Let € > 0. Then dp € N such that a, > a — ¢, and d¢ € N such that b, < b+ €. Let
r := max(p, q). Then

a—e<a,<a <b <b,<b+e
Hence,
(<b.—a,<(bt+e)—(a—€)=(b—a)+2e.

Since this is true for all € > 0, we get £ < b — a. O]
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