Chapter 1: Preliminaries

1 Sets

Definition 1 (Set basics).

1.
$$A \subseteq B :\iff (\forall x \in A, x \in B).$$

2. $A = B :\iff (A \subseteq B \land B \subseteq A).$
3. $A \subset B :\iff (A \subseteq B \land B \not\subseteq A).$
4. $A \cup B := \{x : x \in A \text{ or } x \in B\}.$
5. $A \cap B := \{x \in A : x \in B\}.$
6. $A \setminus B := \{x \in A : x \notin B\}.$
7. $\bigcup_{i \in I} A_i := \{x : \exists i \in I \text{ such that } x \in A_i\}.$
8. $\bigcap_{i \in I} A_i := \{x : \forall i \in I, x \in A_i\}.$
9. $A \times B := \{(x, y) : x \in A, y \in B\}.$
10. $\prod_{i=1}^n A_i := \{(x_1, x_2, \dots, x_n) : x_i \in A_i \text{ for all } i\}.$
Theorem 1. 1. $A \subseteq B \iff A \cap B = A \iff A \cup B = B.$

2. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C).$

- 3. $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C).$
- $\textit{4. } A \cup (B \cup C) = (A \cap B) \cup (A \cap C).$
- 5. $A \cap (B \cap C) = (A \cup B) \cap (A \cup C).$

2 Relations and Functions

Definition 2 (Relation and function). A relation R between A and B is a subset of $A \times B$. A function $f : A \to B$ is a relation between A and B such that

 $(a, b_1) \in f \text{ and } (a, b_2) \in f \implies b_1 = b_2.$

D(f) := A (called domain of f), and R(f) := B (called range of f).

Lemma 2. Let $f : A \to B$ and $g : A \to B$. Then $f = g \iff (\forall x \in A, f(x) = g(x))$.

Definition 3 (Image and reverse image). Let $f : A \to B$ be a function.

- 1. For $X \subseteq A$, $f(X) := \{f(x) : x \in X\}$ is called the image of X under f. Equivalently, $y \in f(X) \iff (\exists x \in X, f(x) = y).$
- 2. For $Y \subseteq B$, $f^{-1}(Y) = \{x : f(x) \in Y\}$ is called the inverse image of Y under f. Equivalently, $x \in f^{-1}(Y) \iff f(x) \in Y$.

Lemma 3. Let $f : A \to B$. Let $X_1, X_2 \subseteq A$ and $Y_1, Y_2 \subseteq B$.

- 1. $f(X_1 \cup X_2) = f(X_1) \cup f(X_2)$.
- 2. $f(X_1 \cap X_2) \subseteq f(X_1) \cap f(X_2)$.
- 3. $f^{-1}(Y_1 \cup Y_2) = f^{-1}(Y_1) \cup f^{-1}(Y_2).$
- 4. $f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2).$

Definition 4 (Composition). For functions $f : A \to B$ and $g : B \to C$, $g \circ f : A \to C$ is the defined as $(g \circ f)(x) = g(f(x))$.

Definition 5 (Injection and surjection). Let $f : A \to B$.

- 1. f is injective (aka one-to-one) : $\iff \forall x_1 \in A, \forall x_2 \in A, (f(x_1) = f(x_2) \implies x_1 = x_2).$
- 2. f is surjective (aka onto) : $\iff \forall y \in B, \exists x \in A, f(x) = y.$

Lemma 4 (Composition). Let $f : A \to B$ and $g : B \to C$.

- 1. If f and g are injective, then $g \circ f$ is injective.
- 2. If $g \circ f$ is injective, then f is injective.
- 3. If f and g are surjective, then $g \circ f$ is surjective.
- 4. If $g \circ f$ is surjective, then g is surjective.

Definition 6 (Identity). The identity function $id_A : A \to A$ is given by $id_A(x) = x$ for all $x \in A$.

Definition 7 (Bijection). A function $f : A \to B$ is a bijection iff (the following are equivalent):

- 1. f is injective and surjective.
- 2. $\exists g: B \to A \text{ such that } g \circ f = \mathrm{id}_A \text{ and } f \circ g = \mathrm{id}_B$. (Then g is called the inverse of f, and is denoted by f^{-1} .)

Proof sketch of equivalence. If f is injective and surjective, for each $y \in B$, there is a unique $x \in A$ such that f(x) = y. Define g(y) = x and show condition 2. To show that condition 2 implies condition 1, use Lemma 4.

Definition 8 (Restriction). Let $f : A \to B$ be a function. Let $X \subseteq A$. Then f|X is a function from X to B such that (f|X)(x) = f(x) for all $x \in X$.

Lemma 5. There is an injection from A to B iff there is a surjection from B to A.

•

Proof. \implies : Let $f: A \to B$ be injective. Then for any $y \in B$, $f^{-1}(y)$ contains 0 or 1 elements. Let a be an arbitrary element of A. Define $q: B \to A$ as:

$$g(y) = \begin{cases} x & \text{if } f^{-1}(y) = \{x\}\\ a & \text{if } f^{-1}(y) = \emptyset \end{cases}$$

Pick any $x \in A$. Let y = f(x). Then $x \in f^{-1}(y)$. Hence, g(y) = x. Hence, g is surjective. \Leftarrow :

Let $g: B \to A$ be surjective. Then for any $x \in A$, we have $g^{-1}(x) \neq \emptyset$. By the axiom of choice, there is a function $f: A \to B$ such that $f(x) \in g^{-1}(x)$. For any distinct $x_1, x_2 \in A$, we have $g^{-1}(x_1) \cap g^{-1}(x_2) = \emptyset$. Hence, f is injective. \Box

3 Set Cardinality

Definition 9. A set S is countable iff there exists a surjection $f : \mathbb{N} \to S$. A set S is denumerable iff it is countable and infinite.

Lemma 6. A set S is countable iff there exists a surjection $f : T \to S$, where T is countable.

Lemma 7. There is a bijection from \mathbb{N} to $\mathbb{N} \times \mathbb{N}$. (Hence, $\mathbb{N} \times \mathbb{N}$ is countable.)

Proof sketch. The bijection $f : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ is defined as

```
1: Set j = 1

2: for s \in \mathbb{N} do

3: for i from 1 to s - 1 do

4: Set f(j) = (i, s - i)

5: j \neq 1

6: end for

7: end for
```

Theorem 8. Let I be a finite set and for each $i \in I$, let A_i be a countable set. Then $\prod_{i \in I} A_i$ is countable.

Proof sketch. When |I| = 2, we can show a surjection from $\mathbb{N} \times \mathbb{N}$ to $A_1 \times A_2$. For larger |I|, use induction on |I|.

Theorem 9. Let I be a countable set and for each $i \in I$, let A_i be a countable set. Then $\bigcup_{i \in I} A_i$ is countable.

Proof sketch. Since I is countable, there exists a surjection $f : \mathbb{N} \to I$. Since A_i is countable, there exists a surjection $g_i : \mathbb{N} \to A_i$. Then $h(i, j) = g_i(j)$ is a surjection from $\mathbb{N} \times \mathbb{N}$ to $\bigcup_{i \in I} A_i$.

Theorem 10. Let A be a countable set. Let B be the set of all finite subsets of A. Then B is countable.

Proof sketch. Express B as union of k-sized sets and use Theorem 9. For each k, a subset is finite by Theorem 8. \Box

Theorem 11 (Cantor's theorem). Let P be the power set of A. Then there is no surjection from A to P.

Proof sketch. Assume there is a surjection $f : A \to P$. Let $D := \{a \in A : a \notin f(a)\}$. Since $D \in P$ and f is a surjection, we have $D = f(a_0)$ for some $a_0 \in A$. For each case $a_0 \in D$ and $a_0 \notin D$, show a contradiction.