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Abstract

Many people falsely believe that an explanation written in English that attempts

to justify their opinions is a proof. Such an explanation may be useful for convincing

most people, but technically, it need not be a valid proof. Proofs are useful because

they are objective in nature and establish truth beyond any doubt. This article

attempts to precisely define what a proof is.

I was a Teaching Assistant (TA) for the ‘Design and Analysis of Algorithms’ course

at CSA, IISc in 2020. While grading homeworks, I was surprised to find out that a lot

of students didn’t know how to write proofs. Many of them wrote incorrect proofs but

strongly believed that their proofs were correct. Hence, they believed that my grading

was pedantic or arbitrary. When I talked to them, I realized that the problem was not

that people didn’t know how to prove; the problem was that many of them didn’t know

what exactly a proof is.

Learning to write proofs is tricky. Most students learn proof-writing by looking at

examples of proofs. This is what I too initially did during my undergrad. Examples are

good for learning proof techniques, like proof by contradiction, proof by induction, proof

by cases, etc. But such examples can’t be used to truly understand what a proof is.

Unless people know what a proof is, it would be very difficult for them to know whether

their attempted proof is correct or not.

1 Why proofs?

Often in math, we want to ascertain the truth of statements. Let’s take a few statements

as examples. Do you know which of these are true and which are false?

1. The product of any two odd numbers is odd.

2. Let f : R → R be a function. Let a, b ∈ R such that a < b, f(a) < 0, and f(b) > 0.

Then ∃c ∈ R such that a < c < b and f(c) = 0.

3. Every even natural number greater than 2 is the sum of two prime numbers.
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Let’s say you made up your mind about which of these are true and which are false.

How would you convince others that your opinions are correct? In fact, how would you

know that your opinions are correct? How can you be sure that there’s no mistake in

your reasoning?

Early in the history of mathematics, many mathematicians made claims about what

they thought was true. But some of these claims were later shown to be false. I, too, have

at times believed that something was true, only to later find a counterexample and a flaw

in my reasoning. This made me very uncomfortable. How can I ever trust myself now?

Eventually, mathematicians found a way out of this existential problem. They found a

technique that can establish the truth of a statement in a way that leaves no room for

doubt. This technique is called proof.

Somewhat confusingly, the word ‘proof’ already exists in the English language, and

it’s meaning is similar, but not exactly the same, as the word ‘proof’ in math. Many

people falsely believe that an explanation for why they think a statement is true is

a mathematical proof if the explanation is detailed enough and written using enough

amount of mathematics. But that’s not necessarily true. The word ‘proof’ has a very

specific meaning in math.

As an analogy, if you want to explain someone an algorithm, one option is to explain

the algorithm using English sentences. But that may be imprecise and ambiguous. On

the other hand, if you give them code for the algorithm in a programming language,

that would be completely unambiguous. The syntax of the programming language would

force you to be unambiguous. Similarly, a proof is a way of establishing the truth of a

statement using arguments written in a specific language. Writing arguments in such a

language would force you to be unambiguous.

The ability to precisely state something is often taken for granted. A 10-year-old

child can probably explain how to sort a list of numbers in ascending order. But when

I was new to programming, writing a program to sort a list of numbers was non-trivial

for me. Many of my friends had a similar experience. It was difficult not because we

didn’t know what loops and conditionals were. It was difficult because we weren’t used

to stating algorithms precisely. Before this exercise, the idea that I don’t know how to

precisely describe how to sort a list of numbers would have sounded absurd! In this

sense, programming was enlightening for me. I think it’s the same with writing proofs,

i.e., learning to write proofs gives people the ability to precisely reason about the truth

of mathematical statements.

If you write an algorithm in a programming language and the compiler successfully

compiles you code, you can be sure that there are no syntax errors in your code. Similarly,

there is a simple mechanical way to check whether a proof is correct.
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In fact, there are computer programs, like Coq, that can validate your proofs if they’re

written in a certain proof language. If such a program says that your proof is correct,

you can be absolutely sure that your proof is correct.

2 What is a proof?

A proof is a sequence of statements, where each statement is either an assumption or

follows from previously-known facts using rules of inference. A rule of inference is a

statement of the form A1, A2, . . . , An ⊢ B, which means that if A1, A2, . . ., An are known

to be true, then we can infer that B is true.

Let’s look at an example of a rule:

k ∈ Z, x = 2× k + 1 ⊢ isOdd(x).

This rule says that if k is an integer and x = 2× k + 1, then we can infer that x is odd.

We know that 3 ∈ Z and 7 = 2× 3+ 1. So using this rule, we can infer isOdd(7). In this

rule, x and k are parameters, i.e., they are treated as placeholders which we can replace

by other values. Here we replaced x by 7 and k by 3.

Note that once we assume 3 ∈ Z and 7 = 2 × 3 + 1, we don’t need to know what

∈, Z, +, ×, =, 2, 3, 1, 7 and isOdd mean. The inference procedure is simply symbolic

substitution. This is why checking proofs is simple, we just need to ensure that the

symbolic substitution was carried out correctly.

I’ll now give a few examples of proofs. Note that the way proofs are presented here

looks very different from the way proofs are presented in most mathematical texts. I’ll

comment on this discrepancy after presenting the first example and explain why this

difference is merely cosmetic.

3 Example 1: product of odd numbers is odd

We will prove that the product of two odd numbers is odd. To do this, we first need to

express this statement precisely:

isOdd(a), isOdd(b) ⊢ isOdd(ab).

In our proof, we will need many definitions and basic facts. For example, the definition

of isOdd, the definition of ‘logical and’ (∧), the definition of =, and some basic facts about

arithmetic operators + and ×, like closure over integers, associativity, distributivity,
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etc. We will capture these definitions and facts using inference rules, called axioms.

Specifically, axioms are either definitions or they are statements that are so simple and

obvious that we assume them to be true without proof. In this example, instead of stating

beforehand all the axioms that we will use in the proof, we will introduce them when we

need them.

Axioms for isOdd:

• Odd1: x = 2k + 1, k ∈ Z ⊢ isOdd(x).

• Odd2: isOdd(x) ⊢ ∃k(x = 2k + 1 ∧ k ∈ Z).

Here Odd1 and Odd2 are the names of the two axioms.

Here ∧ means ‘logical and’. Note that in axiom Odd2, x is a parameter but k is not,

since it is bound to the ‘∃’ symbol.

Next, we have an inference rule about ∃: Let ϕ(k) be an expression containing a

variable k. Then from ∃kϕ(k) we can infer ϕ(r), where r is a fresh variable, i.e., a

variable that hasn’t been used so far in the proof. We call this rule ∃-elimination.

Let’s start the proof now.

Proof of isOdd(a), isOdd(b) ⊢ isOdd(ab):

1: isOdd(a) // given

2: isOdd(b) // given

These statements follow from the left half of the result that we want to prove, i.e.,

isOdd(a), isOdd(b) ⊢ isOdd(ab). The text after ‘//’ are comments, i.e., not part of the

statements.

3: a = 2r + 1 ∧ r ∈ Z // from Odd2, 1, ∃-elimination

4: b = 2s+ 1 ∧ s ∈ Z // from Odd2, 2, ∃-elimination

Axioms for ∧:

• ∧E1: A ∧B ⊢ A.

• ∧E2: A ∧B ⊢ B.

5: a = 2r + 1 // 3, ∧E1
6: r ∈ Z // 3, ∧E2
7: b = 2s+ 1 // 4, ∧E1
8: s ∈ Z // 4, ∧E2

Axioms for =:

• id=: a = a.

• repl=: Let ϕ(x) be a predicate containing variable x. Then a = b, ϕ(a) ⊢ ϕ(b).

(Recall that rules of inference are statements of the form A1, A2, . . . , An ⊢ B. But when

n = 0, we simply write the rule as B. id= is one such rule.)
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Using repl=, we can prove symmetry of =, i.e., a = b ⊢ b = a (use ϕ(x) : x = a).

Let’s name this result symm=. Using repl=, we can prove transitivity of =, i.e., a = b, b =

c ⊢ a = c (use b = c and ϕ(x) : a = x; see Lemma 2 in Appendix A for details). Let’s

name this result trn=. Using repl= twice, we can prove that a = b, c = d ⊢ ac = bd (first

use ϕ(x) : ac = xc and a = b, then use ϕ(x) : ac = bx and c = d). Let’s name this result

mult=. (See Lemma 3 in Appendix A for a similar proof.)

9: ab = (2r + 1)(2s+ 1) // mult=, 5, 7

Axioms about arithmetic:

• Distributivity of × over +: a(b+ c) = ab+ ac, (a+ b)c = ac+ bc.

• Multiplicative identity: a× 1 = a, 1× a = a.

• Associativity of ×: (ab)c = a(bc).

• Associativity of +: a+ (b+ c) = (a+ b) + c.

Using the above axioms for arithmetic with repl= and symm=, we can prove that for

any r and s, we get (2r+1)(2s+1) = 2(r(2s+1)+ s)+1 (see Theorem 4 in Appendix A

for details).

10: (2r + 1)(2s+ 1) = 2(r(2s+ 1) + s) + 1. // Theorem 4 in Appendix A

11: ab = 2(r(2s+ 1) + s) + 1. // 9, 10, trn=

Axioms for Z membership:

• 1 ∈ Z, 2 ∈ Z.
• a ∈ Z, b ∈ Z ⊢ a+ b ∈ Z.
• a ∈ Z, b ∈ Z ⊢ ab ∈ Z.

12: r(2s+ 1) + s ∈ Z. // 6, 8, axioms for Z membership

13: isOdd(ab) // 11, 12, Odd1

This completes the proof of isOdd(a), isOdd(b) ⊢ isOdd(ab).

Note how we only used symbolic substitution in the proof. So if you believe in the

axioms above and if you verify that the symbolic substitution was performed correctly,

then the proof is irrefutable. All the axioms above are well-known facts (some can even

be found in elementary-school textbooks), so almost everyone would believe them. Proofs

written like this are, therefore, the gold standard in establishing truth.

But this isn’t how proofs are written in most mathematical texts, and for good reason:

writing proofs this way is cumbersome. A more common way of writing the above proof

is as follows.

Lemma 1. If a and b are odd numbers, then their product ab is also odd.

Proof. Since a is odd, a = 2r + 1 for some r ∈ Z. Similarly, b = 2s + 1 for some s ∈ Z.
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Therefore, ab = (2r + 1)(2s+ 1) = 2(r(2s+ 1) + s) + 1. Since r(2s+ 1) + s ∈ Z, we get

that ab is odd.

A proof written in this way is called an informal proof. On the other hand, the proof

above that used symbolic substitution is called a formal proof.

Note the similarity between the informal and formal proofs. In the informal version,

we skipped some of the simple intermediate results, but the core idea is the same as

that in the formal version. It is the formal proof that ultimately establishes truth; an

informal proof is just a convenient tool to convince others of the existence of a formal

proof without the hassle of writing down the full formal proof.

Although you will probably not need to write formal proofs, it’s instructive to have

a rough idea of the formal version in mind when writing informal proofs. If you’re ever

unsure of whether your informal proof is correct, try to see if you can get a formal proof.

Once you convince yourself that a formal proof exists, you’ll be confident about your

proof’s correctness.

Disclaimer: the axiom names above are probably non-standard. Some of the axioms

above are actually not axioms in standard systems of logic, since they can be derived

from even more primitive axioms. The words informal and formal as defined above are

also not standard.

4 Example 2: De Morgan’s theorem

TODO: introduce propositional logic, most of its axioms and proof by contradiction.

• A list of propositional logic axioms.

• A list of derived rules.

5 Example 3: |E| ≥ |V | − 1 for a simple undirected

connected graph (V,E)

TODO: axiomatize some graph-theoretic definitions and introduce proof by induction.

TODO: maybe add more examples from other areas, like number theory, linear alge-

bra, probability.

TODO: talk about soundness and completeness. Link to more resources on logic for

those who are interested.
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A Miscellaneous Proofs

Lemma 2 (trn=). a = b, b = c ⊢ a = c.

Proof.

1: a = b // given

2: b = c // given

3: a = c // 1, 2, repl= with ϕ(x) : a = x.

Lemma 3 (add=). a = b, c = d ⊢ a+ c = b+ d.

Proof.

1: a = b // given

2: a+ c = b+ c // 1, repl= with ϕ(x) : a+ c = x+ c

3: c = d // given

4: a+ c = b+ d // 3, 2, repl= with ϕ(x) : a+ c = b+ x

Theorem 4. (2r + 1)(2s+ 1) = 2(r(2s+ 1) + s) + 1

Proof.

1: (2r + 1)(2s+ 1) = (2r)(2s+ 1) + 1× (2s+ 1) // distributivity of × over +

2: (2r)(2s+ 1) = 2(r(2s+ 1)) // associativity of ×
3: 1× (2s+ 1) = 2s+ 1 // Multiplicative identity

4: (2r)(2s+ 1) + 1× (2s+ 1) = 2(r(2s+ 1)) + 2s+ 1 // 2, 3, add=

5: (2r + 1)(2s+ 1) = 2(r(2s+ 1)) + 2s+ 1 // 1, 4, trn=

6: 2(r(2s+ 1) + s) = 2(r(2s+ 1)) + 2s // distributivity of × over +

7: 2(r(2s+ 1)) + 2s = 2(r(2s+ 1) + s) // 6, symm=

8: 2(r(2s+ 1)) + 2s+ 1 = 2(r(2s+ 1) + s) + 1 // 7, 1 = 1, add=

9: (2r + 1)(2s+ 1) = 2(r(2s+ 1) + s) + 1 // 5, 8, trn=
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