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Definition 1 (Stochastic Process). Let T ⊆ R. For any t ∈ T , let Xt (or X(t)) be
a random variable with support D. Then X := {Xt : t ∈ T } is called a stochastic
process on state-space D and time T . Usually, T is either Z≥0 (discrete-time) or R≥0

(continuous-time).

1 Discrete-Time Markov Chains

Definition 2 (Markov Chain). Let X := [X0, X1, . . .] be a stochastic process on state-
space D and time Z≥0. X is called a discrete-time markov chain if Pr(Xt+1 = d |
Xt, Xt−1, . . . , X0) = Pr(Xt+1 = d | Xt). If Pr(Xt+1 = v | Xt = u) = Pr(X1 = v | X0 = u)
for all t, u, v, then X is called time-homogeneous.

Definition 3 (Transition function). Let X be a markov chain on state space D. Define
P (k) : D ×D 7→ [0, 1] as P (k)(i, j) = Pr(Xk = j | X0 = i). Then P (k) is called the k-step
transition function of X. For k = 1, we simply write P instead of P (1). For a finite state
space, we can represent P as a matrix.

Lemma 1 (Chapman-Kolmogorov Equation). P (m+n)(i, j) =
∑

k P
(m)(i, k)P (n)(k, j).

1.1 Classification of States, Recurrence, Limiting Probabilities

Definition 4. Let fi,j := Pr
(∨

t≥1(Xt = j)
∣∣∣ X0 = i

)
. Then fi,j is called the eventual

transition probability from i to j. If i = j, then we write fi,i as fi, and call it the
recurrence probability of state i.

Definition 5. For a state i, let Ni be the random variable that counts the number of
times we are in state i, i.e., Ni :=

∑∞
t=0 1(Xt = i). Then Ni is called the visit-count of i.

Definition 6. A state i of a markov chain is recurrent iff (the following are equivalent):

• the recurrence probability (fi) of i is 1.

• i is visited infinitely often, i.e., Pr(Ni = ∞ | X0 = i) = 1.

• i is visited infinitely often in expectation, i.e., E(Ni | X0 = i) = ∞.

A non-recurrent state is called a transient state.

Lemma 2. Pr(Ni = k | X0 = i) = fk−1
i (1− fi).

Lemma 3. E(Ni | X0 = i) = 1/(1− fi) =
∑∞

t=0 P
(t)(i, i).
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Definition 7. State j is accessible from state i if P (t)(i, j) > 0 for some t. States i and
j communicate (denoted as i ↔ j) if i and j are both accessible from each other.

Lemma 4. Accessibility is reflexive and transitive. Communication is an equivalence
relation. The equivalence classes of communicability are called state classes. A markov
chain is irreducible if it has just one state class.

Definition 8. Let Ti be the time when a markov chain moves to state i, i.e., Ti :=
mint≥1(Xt = i). When conditioned on X0 = i, Ti is called the recurrence time of i. State
i is called positive recurrent if E(Ti | X0 = i) is finite, otherwise it is null recurrent.

Lemma 5. Recurrence and positive recurrence are class properties, i.e., they are same
for all states in a class.

Lemma 6. In a finite-state markov chain, all recurrent states are positive recurrent, and
there is at least one recurrent state.

Definition 9 (Periodicity). For a state i, its period is defined as gcd({t : Pr(Ti = t |
X0 = i) > 0}). A state is aperiodic if its period is 1.

Lemma 7. Periodicity is a class property.

Definition 10 (Ergodicity). A state is ergodic if it is positive recurrent and aperiodic.
A markov chain is ergodic if all its states are ergodic.

Lemma 8. In an irreducible ergodic markov chain, for every state j, limt→∞ P (t)(j, i) =
πi for a unique real number πi. πi is called the limiting probability of state i. Furthermore,
πi is the unique solution to this system of equations: πi =

∑
j πjP (j, i) for all i (π = P Tπ

in matrix form) and
∑

i πi = 1.

Lemma 9. In an irreducible ergodic markov chain, E(Ti | X0 = i) = 1/πi.

Corollary 9.1. A state i is null recurrent iff πi = 0.

Theorem 10. If the transition function of markov chain X is doubly-stochastic (i.e.,
each row and each column sums to 1), then the limiting probability of each state is 1/n,
where n is the number of states.

1.2 Time-Reversibility

Definition 11. For an irreducible ergodic markov chain X with limiting probabilities π.
Let Y be a markov chain whose transition function is Q(i, j) = P (j, i)(πj/πi). Then Y
is called the time-reversed markov chain of X. X is called time-reversible if Q = P .

Theorem 11. Let X be a time-reversible markov chain with limiting probabilities π.
Then π is the unique solution to this system of equations: xjP (j, i) = xiP (i, j) for all
states i and j, and

∑
i xi = 1.

Theorem 12. If the transition function of markov chain X is symmetric, then X is
time-reversible.
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1.3 Simple Random Walk

Let X be a TH MC on state space S = I ∩ Z, where I is an interval of R and

Pr(X1 = j | X0 = i) =


p if j = i+ 1

1− p if j = i− 1

0 if j ̸= i

.

Lemma 13 (Martingale property). Let ∀t ≥ 1. If p = 1/2, then E(Xt | Xt−1) = Xt−1.
Otherwise, for r := (1− p)/p, E(rXt | Xt−1) = rXt−1.

Lemma 14. Let I = [0, b], T := mint≥0(Xt ∈ {0, b}), and r := (1− p)/p. Then ∀i ∈ S,

pi := Pr(XT = b | X0 = i) =


i

b
if p = 1/2

ri − 1

rb − 1
if p ̸= 1/2

µi := E(T | X0 = i) =

i(b− i) if p = 1/2
1

1− 2p

(
i− b

ri − 1

rb − 1

)
if p ̸= 1/2

Proof sketch. p0 = 0, pb = 1, and pi := ppi+1 + (1− p)pi−1 ∀i ∈ [b− 1]. Rearrange to get
p(pi+1 − pi) = (1− p)(pi − pi−1) ∀i ∈ [b− 1]. Let di := pi − pi−1 ∀i ∈ [b]. Then

∀i ∈ [b],
di
d1

=
i−1∏
j=1

dj+1

dj
=

i−1∏
j=1

r = ri−1,

∀i ∈ S, pi =
i∑

j=1

dj =
i∑

j=1

d1r
j−1 = d1 ×

{
i if p = 1/2
ri−1
r−1

if p ̸= 1/2
.

Since pb = 1, we get d1 = 1/b if p = 1/2 and d1 = (r − 1)/(rb − 1) otherwise.

µ0 = µb = 0, and µi = 1 + pµi+1 + (1 − p)µi−1 ∀i ∈ [b − 1]. Rearrange to get
p(µi+1 − µi) = (1 − p)(µi − µi−1) − 1 ∀i ∈ [b − 1]. Let νi := µi − µi−1 ∀i ∈ [b]. Then
∀i ∈ [b− 1], νi+1 = rνi − 1/p.

Case 1: p = 1/2

∀i ∈ [b], νi − ν1 =
i−1∑
j=1

(νj+1 − νj) = −2(i− 1).

∀i ∈ S, µi =
i∑

j=1

νj =
i∑

j=1

(ν1 − 2(j − 1)) = i(ν1 − (i− 1)).

Since µb = 0, we get ν1 = b− 1, and so µi = i(b− i).

Case 2: p ̸= 1/2

νi+1 = rνi−
1

p
= rνi−

1

p

(
r

r − 1
− 1

r − 1

)
=⇒ νi+1−

1

p(r − 1)
= r

(
νi −

1

p(r − 1)

)
.
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p(r − 1) = 1− 2p. Hence,

∀i ∈ [b],
νi − 1

1−2p

ν1 − 1
1−2p

=
i−1∏
j=1

νj+1 − 1
1−2p

νj − 1
1−2p

= ri−1.

∀i ∈ S, µi =
i∑

j=1

νi =
i∑

j=1

(
1

1− 2p
+ rj−1

(
ν1 −

1

1− 2p

))
.

=
i

1− 2p
+

(
ν1 −

1

1− 2p

)
ri − 1

r − 1
.

Set µb = 0 to get the answer.

Lemma 15 (Catalan number). The number of balanced parentheses strings of length 2n
is
(
2n
n

)
1

n+1
.

Lemma 16. For all n ≥ 1,(
2n

n

)√
n

4n
∈
[
2
√
π

e2
,

e√
2π

]
.

Proof. Use Stirling’s approximation: n!en/(nn
√
n) ∈ [

√
2π, e].

Lemma 17. Let S = Z. If p ̸= 1/2, then every state is transient. Otherwise, every state
is null recurrent.

Proof. All states communicate, so all states belong to the same class. Recurrence and
positive recurrence are class properties.

Using Definition 6, we get that state 0 is recurrent iff E(N0 | X0 = 0), where N0 is
the number of times we visit state 0.

E(N0 | X0 = 0) =
∞∑
t=0

P (t)(0, 0) (by Lemma 2)

=
∞∑
j=0

2

(
2j

j

)
pj(1− p)j (by Lemma 15)

≤
√
2e

π

∞∑
j=0

(4p(1− p))j√
j

. (by Lemma 16)

4p(1−p) ≤ 1 and p = 1/2 ⇐⇒ 4p(1−p) = 1. Hence, the series is convergent iff p ̸= 1/2.
Hence, state 0 is recurrent iff p = 1/2.

Let p = 1/2. Then T := mint≥0(Xt = 0) and T ′ := mint≥1(Xt = 0). Then state 0 is
null recurrent iff E(T ′ | X0 = 0) = ∞. Since state 0 is recurrent, Pr(T ′ = ∞ | X0 = 0) =

4
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0. Hence, 0 = Pr(T ′ = ∞ | X0 = 0) = Pr(T = ∞ | X0 = 1).

E(T ′ | X0 = 0) = 1 + E(T | X0 = 1)

= 1 +
∞∑
j=0

(2j + 1)Pr(T = 2j + 1 | X0 = 1) (since Pr(T = ∞ | X0 = 1) = 0)

= 1 +
∞∑
j=0

2j + 1

j + 1

(
2j

j

)
1

22j+1
(by Lemma 15)

≥ 1 +

√
π

e2

∞∑
j=0

1√
j

(by Lemma 16)

= ∞.

Hence, 0 is null recurrent.

Lemma 18. Let I = [0,∞). Let T := mint≥0(Xt = 0). Then for i > 0,

µi := E(T | X0 = i) =

{
i/(1− 2p) if p < 1/2

∞ if p ≥ 1/2
.

pi := Pr(T ̸= ∞ | X0 = i) =

{
1 if p ≤ 1/2

ri if p > 1/2
.

Proof sketch. µi = iµ1 and µ1 = 1 + pµ2 = 1 + 2pµ1. Suppose µ1 ̸= ∞. If p > 1/2, then
µ1 = 1/(1 − 2p) < 0, which is a contradiction. If p = 1/2, then µ1 = 1 + µ1, which is a
contradiction. Hence, µ1 = ∞ when p ≥ 1/2.

pi = pi1 and p1 = (1 − p) + pp2. Solving these equations gives us p1 ∈ {1, r}. When
p ≤ 1/2, we get r ≥ 1, but p1 ∈ [0, 1] (since p1 is a probability). Hence, pi = 1 when
p ≤ 1/2.

Let p < 1/2. Then µ1 ∈ {∞, 1/(1 − 2p)}. We will show that µ1 ̸= ∞. Since pi = 1
for all i ≥ 0, we have Pr(T = ∞ | X0 = i) = 0. Hence,

µ1 = E(T | X0 = 1) =
∞∑
j=0

(2j + 1)Pr(T = 2j + 1 | X0 = 1)

=
∞∑
j=0

2j + 1

j + 1

(
2j

j

)
pj(1− p)j+1 (by Lemma 15)

≤ 2(1− p)
e√
2π

∞∑
j=0

(4p(1− p))j√
j

. (by Lemma 16)

This series is convergent, since 4p(1 − p) < 1 for p < 1/2. Hence, µ1 ̸= ∞, so µ1 =
1/(1− 2p).

Let p > 1/2. Consider the random walk Y on state space Z where ∀t ≥ 0, Pr(Yt+1 =
j+1 | Yt = j) = p and Pr(Yt+1 = j− 1 | Yt = j) = 1− p. Let T ′ := mint≥0(Yt = 0). Then
Pr(T ̸= ∞ | X0 = 1) = 1 ⇐⇒ Pr(T ′ ̸= ∞ | Y0 = 1) = 1. Pr(T ′ ̸= ∞ | Y0 = −1) = 1,
using the p < 1/2 case. Hence, we return to state 0 in Y with probability 1. Hence, 0 is
a recurrent state in Y , which is a contradiction. Hence, p1 = Pr(T ̸= ∞ | X0 = 1) ̸= 1.
Hence, p1 = r.
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2 Counting Process

Definition 12 (Counting Process). Let N be a stochastic process on state space Z≥0 and
time R≥0. Then N is called a counting process if N(0) = 0 and N(t) is monotone in t,
i.e., t1 < t2 =⇒ N(t1) ≤ N(t2).

Definition 13 (Independent increments). A counting process N has independent incre-
ments iff for any two disjoint intervals (u1, v1] and (u2, v2] in R≥0, the random variables
N(v1)−N(u1) and N(v2)−N(u2) are independent.

Definition 14 (Stationary increments). A counting process N has stationary increments
iff for any u ≤ v, the random variables N(v) − N(u) and N(v − u) have the same
distribution.

Definition 15 (Arrival and interarrival times). For a counting process N , for i ∈ Z≥0,
define the ith arrival time Si := mint≥0(N(t) = i). For i ∈ Z≥1, define the ith interarrival
time Ti := Si − Si−1.

Lemma 19. For a counting process N with arrival times S, N(t) ≥ n ⇐⇒ Sn ≤ t.

Definition 16 (Stopping time). Let X = [X1, X2, . . .] be a sequence of random variables.
The random variable N is called a stopping time for X if for all n ≥ 0, (the following
two definitions are equivalent):

• N = n is independent of Xn+1, Xn+2, . . ..

• N ≤ n is independent of Xn+1, Xn+2, . . ..

Theorem 20 (Wald’s identity). Let X = [X1, X2, . . .] be a sequence of random variables
where E(Xi) = µ for all i. Let N be a stopping time for X. Then

E

(
N∑
i=1

Xi

)
= µE(N).

Proof sketch. For all i, N ≥ i is independent of Xi, and
N∑
i=1

Xi =
∞∑
i=1

Xi 1(N ≥ i).

3 Poisson Process

Definition 17 (Poisson process). A counting process N is a Poisson process with rate
function λ : R≥0 7→ R≥0 if N has independent increments and N(t2)−N(t1) ∼ Poisson(µ),

where µ :=
∫ t2
t1

λ(t)dt. N is called homogeneous if λ(t) = λ(0) for all t, otherwise it is
called inhomogeneous. For a homogeneous process, we denote λ(0) by λ.

Lemma 21. A Poisson process N is homogeneous iff it has stationary increments.

Theorem 22 (Alternative definition of Poisson process). A counting process N is a
Poisson process with continuous rate function λ iff N has independent and stationary
increments and Pr(N(t+h)−N(t) = 1) = λ(t)h+o(h) and Pr(N(t+h)−N(t) ≥ 2) = o(h).
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Proof sketch for homogeneous. Let g(u, t) := MGFu(N(t)) = E(euN(t)). Show g(u, t) =
1+λt(eu−1)+o(t) straightforwardly. Use calculus to show that g(u, t) = exp(eλt(eu−1))
(find derivative w.r.t t by computing limh→0(g(u, t+h)−g(u, t))/h; this gets rid of o(h)).
Conclude that N(t) ∼ Poisson(λt) since g(u, t) is MGF of Poisson(λt).

Lemma 23. For a homogeneous Poisson process N ,

Pr(N(s) = a | N(s+ t) = a+ b) =

(
a+ b

a

)(
s

s+ t

)a(
t

s+ t

)b

.

Theorem 24. Let N be a counting process. Then N is a homogeneous Poisson process
with rate λ iff all interarrival times are independent and distributed Expo(λ).

Theorem 25 (Decomposition theorem 1). Let K be a finite set, and let {Ni : i ∈ K} be
independent Poisson processes, where Ni has rate function λi. Let N :=

∑
i∈K Ni. Then

N is a Poisson process with rate function
∑

i∈K λi.

Theorem 26 (Decomposition theorem 2). Let N be a Poisson process with rate function
λ. Let K be a finite set (called set of labels). Suppose the jth event receives label Lj ∈ K,
where Pr(Lj = i) = pi(Sj) for some function pi : R≥0 7→ R≥0, and {N,L1, L2, . . .} are
independent. For i ∈ K, let Ni(t) be the number of events having label i, i.e, Ni(t) =∑N(t)

j=1 1(Lj = i). Then Ni is a Poisson process with rate function piλ. Furthermore, all
Ni are independent and if all pi are constant, then Ni(t) | N(t) ∼ Binom(N(t), pi).

Lemma 27. Let N (1) and N (2) be independent homogeneous Poisson processes with rates
λ1 and λ2. Then

Pr(S(1)
n < S(2)

m ) =
n+m−1∑
i=n

(
n+m− 1

i

)
λi
1λ

n+m−1−i
2

(λ1 + λ2)n+m−1
.

Proof sketch. Model as a continuous markov chain with state space (n1, n2), where ni is
the number of events of N (i) that have occurred.

Theorem 28 (arrival times distributed as order statistics). Let X = [X1, X2, . . . , Xn]
be IID uniform variables over [0, t]. Let U = sorted(X). Let N be a homogeneous
Poisson process. Let Si be the ith arrival time of N . Then conditioned on N(t) = n, the
distribution of [S1, . . . , Sn] and U are identical.

Lemma 29 (Excess and Residual). Let N be a Poisson process with rate function λ.
Let Si be the ith arrival time. Let Y (t) := SN(t)+1 − t and R(t) := t − SN(t). Then
Y (t) > s ⇐⇒ N(t + s) − N(t) = 0 and R(t) > r ⇐⇒ N(t) − N(t − r) = 0. If N is
homogeneous, we get Y (t) ∼ Expo(λ) and R(t) ∼ Expo(λ).

4 Continuous-Time Markov Chain

Definition 18 (CTMC). Let X := {X(t) : t ∈ R≥0} be a stochastic process on discrete
state-space D. X is called a continuous-time markov chain (CTMC) if Pr(X(t+ s) = d |
{X(u) : 0 ≤ u ≤ s}) = Pr(X(t + s) = d | X(s)) for all s, t ∈ R≥0. If Pr(X(t + s) = v |
X(s) = u) = Pr(X(t) = v | X(0) = u) for all u, v, s, t, then X is called time-homogeneous
(TH) or stationary.
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Theorem 30 (Equiv defn of TH CTMC). Let X := {X(t) : t ∈ R≥0} be a stochastic

process on discrete state-space D. Let Y (t) := {X(u) : 0 ≤ u < t}. Let T
(s)
i :=

mint≥0(X(t + s) ̸= i). Let P
(s)
i,j := Pr(X(s + T

(s)
i ) = j | X(s) = i, Y (s)). X is TH

CTMC iff (T
(s)
i | X(s) = i, Y (s)) ∼ Expo(νi), where νi is a constant that doesn’t depend

on s or Y (s), and P
(s)
i,j is a constant that doesn’t depend on s or Y (s).

Since T
(s)
i and P

(s)
i,j don’t depend on s, we simply write Ti and Pi,j. Ti is called the

transition time out of state i, νi is called the transition rate out of state i, and Pi,j is the
probability of transitioning from state i to state j.

Let qi,j := νiPi,j. Then νi =
∑

j qi,j.

Theorem 31 (Chapman-Kolmogorov DiffEqs). For a TH CTMC X, let Pi,j(t) :=
Pr(X(t) = j | X(0) = i). Then

• Backward DiffEqs:
dPi,j(t)

dt
=
∑
k ̸=i

qi,kPk,j(t)− νiPi,j(t).

• Forward DiffEqs:
dPi,j(t)

dt
=
∑
k ̸=j

Pi,k(t)qk,j − Pi,j(t)νj.

Let ri,j :=

{
qi,j if i ̸= j

−νi if i = j
. Let the state space be [n]. Let R be a matrix where R[i, j] =

ri,j. Then CBKE becomes P ′(t) = RP (t) and CFKE becomes P ′(t) = P (t)R.

Lemma 32. CKBE P ′(t) = RP (t) solves to P (t) = eRt, where eA :=
∑∞

i=0A
i/i! for

any square matrix A. Suppose R has n eigenpairs {(λ1, vi) : i ∈ [n]}. Let P be a square
matrix whose ith column is vi, and D be a diagonal matrix whose ith diagonal entry is λi.
Then R = PDP−1, eRt = PeDtP−1, and eDt = diag([eλ1t, . . . , eλnt]).

Lemma 33. Let X be a TH CTMC.

lim
h→0

1− Pi,i(h)

h
= νi ∀i lim

h→0

Pi,j(h)

h
= qi,j ∀i ̸= j

Lemma 34 (Limiting probability). In an irreducible positive-recurrent TH CTMC X, for
every state j, limt→∞ Pj,i(t) = Pi for a unique real number Pi. Pi is called the limiting
probability of state i. Furthermore, Pi is the unique solution to

∑
i Pi = 1 and CK

forward equations, i.e., Piνi =
∑

j ̸=i Pjqj,i.

Lemma 35 (Limiting probability of embedded chain). Let X be an irreducible positive-
recurrent TH CTMC. Let Y be the sequence of states visited by X. Then Y is a discrete
MC. Let P and π be the limiting probabilities of X and Y , respectively. Then Pi =
(πi/νi)/(

∑
j πj/νj) and πi = Piνi/(

∑
j Pjνj).

Definition 19. A CTMC is time-reversible iff the corresponding embedded discrete-time
MC is time-reversible.

Lemma 36 (2-state). For a CTMC on states {0, 1}, where q0,1 = λ and q1,0 = µ, we get

P (t) =
1

λ+ µ

([
µ λ
µ λ

]
+ e−(µ+λ)t

[
λ −λ
−µ µ

])
.
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4.1 Birth and Death Process

Definition 20. A birth-and-death (B&D) process is a TH CTMC X on state space Z≥0

where qi,j = 0 if j ̸∈ {i−1, i+1}. Let λi := qi,i+1 for i ≥ 0, µi := qi,i−1 for i ≥ 1, µ0 := 0.

X(t) is called the population at time t, λi is called the birth rate at population i, and
µi is called the death rate at population i.

Lemma 37. Let X be a B&D process where X(0) = n. Let Tn be the time to reach state
n+ 1, i.e., Tn := mint≥0(X(t) = n+ 1). Then

E(Tn) =
1

λn

+
µn

λn

E(Tn−1) =
1

λn

n∑
i=0

i∏
j=1

µn−j+1

λn−j

.

Var(Tn) =
1

λn(λn + µn)2
+

µn

λn

Var(Ti−1) +
µn

λn + µn

(E(Tn−1) + E(Tn))
2

Proof sketch. Let Ii = 1(next transition goes to state i + 1). Let Xi be the transition
time out of state i. Then Ii ∼ Bernouilli(λi/(µi + λi)), Xi ∼ Expo(λi + µi), and

E(Ti | Ii) = E(Xi) + (1− Ii)(E(Ti−1) + E(Ti))),

Var(Ti | Ii) = Var(Xi) + (1− Ii)(Var(Ti−1) + Var(Ti)).

CKBE for B&D:

dPi,j(t)

dt
= µiPi−1,j(t) + λiPi+1,j(t)− (λi + µi)Pi,j(t).

CKFE for B&D:

dPi,j(t)

dt
= µj+1Pi,j+1(t) + λj−1Pi,j−1(t)− (λj + µj)Pi,j(t).

Theorem 38 (Limiting Probabilities). Let X be an irreducible B&D process on state
space D ⊆ Z≥0 where 0 ∈ D. For n ∈ D, let αn :=

∏n
i=1

λi−1

µi
. If

∑
i∈D αi is finite, then

Pi = αiP0, and P0 = 1/
∑

i∈D αi.

Proof sketch. Use Lemma 34 and add adjacent equations.

5 Renewal Theory

Definition 21. Let [X1, X2, . . .] be a sequence of IID non-negative randvars, called in-
terarrival times, such that Pr(X1 = 0) < 1 and Pr(X1 = ∞) = 0. Let Sn :=

∑n
i=1Xi

(called arrival times). Let N(t) := maxn(Sn ≤ t). Then N is called a renewal process
(note that it is a counting process).

We let F and f denote the CDF and PDF/PMF of X1, respectively. We let F (n) and
f (n) denote the CDF and PDF/PMF of Sn, respectively.

Let Ri be the reward obtained at time Xi for all i ≥ 1, where all Ri are independent.
Let R(t) :=

∑N(t)
i=1 Ri. Then R is called a renewal reward process.

Lemma 39. For all t ≥ 0, Pr(N(t) = ∞) = 0. Pr(limt→∞ N(t) = ∞) = 1.

9



Proof. Let µ := E(X1). µ > 0 since Pr(Xn = 0) < 1.

Pr

(
lim
t→∞

Sn

n
= µ

)
= 1. (strong law of large numbers)

N(t) = ∞ ⇐⇒ (∀n, Sn ≤ t) =⇒ lim
t→∞

Sn

n
= 0.

Pr(N(∞) = ∞) = 1 since Pr(X1 = ∞) = 0.

Definition 22. For a renewal process N , let mN(t) := E(N(t)). Then mN is called the
mean-value function of N . (If N is clear from context, we will write m instead of mN .)

Lemma 40. m(t) =
∑∞

n=1 Pr(Sn ≤ t) =
∑∞

n=1 F
(n)(t).

Theorem 41. m uniquely characterizes F .

Lemma 42. m(t) is finite for all t.

Theorem 43 (Renewal equation). When interarrival times are continuous randvars,

m(t) = F (t) +

∫ t

0

m(t− x)f(x)dx.

Proof sketch. Let N ′(t) := maxn
(∑n+1

i=2 Xi ≤ t
)
. Then N and N ′ are identically dis-

tributed and

N(t) =

{
1 +N ′(t−X1) if X1 ≤ t

0 if X1 > t
.

Finally, m(t) = E(E(N(t) | X1)).

Corollary 43.1. Let N be a renewal process where interarrival times are distributed
Uniform(0, 1). Then for 0 ≤ t ≤ 1, m(t) = et − 1.

Theorem 44 (Limit theorems). For a renewal process N with µ := E(X1),

Pr

(
lim
t→∞

N(t)

t
=

1

µ

)
= 1. lim

t→∞

m(t)

t
=

1

µ
.

Theorem 45 (Limit theorems for rewards). For a renewal process N with rewards {Ri :
i ∈ Z≥1}, let α := E(R1) and µ := E(X1). Then

Pr

(
lim
t→∞

R(t)

t
=

α

µ

)
= 1. lim

t→∞

E(R(t))

t
=

α

µ
.

Theorem 46 (Central limit theorem for renewals). For a renewal process N with µ :=
E(X1) and σ2 := Var(X1), the random variable

lim
t→∞

N(t)− t/µ√
tσ2/µ3

tends to the standard normal distribution.
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Lemma 47 (Stopping time). Let X = [X1, X2, . . .] be the sequence of interarrival times
for renewal process N . Then N(t) + 1 is a stopping time for X.

Proof sketch. N(t) + 1 ≤ n ⇐⇒ Sn > t.

Definition 23. For a renewal process N with arrival times S1, S2, . . .:

• Let Y (t) := SN(t)+1 − t. Y (t) is called the excess at time t.

• Let L(t) := t− SN(t). L(t) is called the remaining life at time t.

Lemma 48. Let N be a renewal process with interarrival times X = [X1, X2, . . .]. Then
E(SN(t)+1) = t+ E(Y (t)) = E(X1)(m(t) + 1).

Proof. N(t) + 1 is a stopping time for X.
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