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Our aim is to find out something about a distribution by observing a sample.

Definition 1 (Sample). For a distribution D, a sample of size n from D is the sequence
[X1, X2, . . . , Xn] of n IID random variables, each having distribution D.

Notation: For a random variable X having distribution D and any function g, define
E(g(D)) := E(g(X)). (Hence, Var(D) := Var(X).)

1 Bias and Variance of Estimators

Definition 2 (Sample mean and variance). Let [X1, . . . , Xn] be a sample.

1. The mean of the sample is defined as X :=
1

n

n∑
i=1

Xi.

2. The variance of the sample is defined as VX :=
1

n− 1

n∑
i=1

(Xi −X)2.

3. The standard-deviation of the sample is defined as SX :=
√
VX .

Theorem 1. Let X be the mean of a sample from D. Then E(X) = E(D) and Var(X) =
Var(D)/n.

Claim 2. Let X and S2 be the mean and variance, respectively, of sample [X1, . . . , Xn].
Let a be any random variable (or a constant). Then

S2 =
1

n− 1

(
n∑

i=1

(Xi − a)2 − n(X − a)2

)
.

(Note that setting a = X gives the definition of S2.)

Theorem 3. Let V be the variance of sample [X1, . . . , Xn] from D. Let µ := E(D) and

σ2 := Var(D). Then E(V ) = σ2 and Var(V ) = E((D−µ)4)
n

− σ4(n−3)
n(n−1)

.

Proof.

E(V ) =
1

n− 1

(
n∑

i=1

E((Xi − µ)2)− nE((X − µ)2)

)
(by Claim 2)

=
1

n− 1

(
n∑

i=1

Var(Xi)− nVar(X)

)
= σ2.

The expression for Var(V ) is from [7].
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2 Distribution of Estimators

Definition 3. Let Z be a random variable and S := [X1, X2, . . .] be an infinite sequence
of random variables. We say that S converges to Z if limn→∞ FXn(x) = FZ(x) for all
x ∈ R where FZ is continuous.

Theorem 4 (Central Limit Theorem). Let X1, X2, . . . be IID randvars having mean µ
and variance σ2. Let Xn := 1

n

∑n
i=1Xi. Let Yn :=

√
n/σ(Xn − µ). Then [Y1, Y2, . . .]

converges to N(0, 1).

Lemma 5 (Scaling normal). Let X ∼ N(µ, σ). Then for any constants a and b, aX+b ∼
N(aµ+ b, |b|σ).

Lemma 6 ([4]). Let X and Y be independent randvars where X ∼ N(µX , σX) and
Y ∼ N(µY , σY ). Then X + Y ∼ N(µX + µY ,

√
σ2
X + σ2

Y ).

Theorem 7. Let [X1, . . . , Xn] be a sample from N(µ, σ). Let X and S2 be the mean and
variance of the sample. Then

1. X ∼ N(µ, σ/
√
n).

2. n−1
σ2 S2 ∼ χ2(n− 1).

3. X and S2 are independent.

Here χ2(n− 1) is the Chi-Squared distribution with n− 1 degrees of freedom.

Proof. Part 1 follows from Lemmas 5 and 6.

[3] proves parts 2 and 3. Alternatively, [5] proves part 3 and [2] proves part 2.

3 Distribution of Statistical Scores

Definition 4. Let Z ∼ N(0, 1) and U ∼ χ2(r) be independent randvars. Let T :=
Z/
√

U/r. Then T ’s distribution is called the Student’s t distribution with r degrees of
freedom.

Lemma 8 (t distribution is symmetric). Let T ∼ t(r). Then T and −T have the same
distribution.

Proof. Let Z ∼ N(0, 1) and U ∼ χ2(r) be independent randvars and T := Z/
√
U/r.

Then T ∼ t(r). Since −Z ∼ N(0, 1), so −T = (−Z)/
√
U/r ∼ t(r).

Lemma 9 (Implications of symmetry). Let X be a continuous random variable such that
X and −X have the same distribution. Then, ∀x ∈ R, we get FX(x) +FX(−x) = 1, and
∀α ∈ [0, 1], we get F−1

X (α) + F−1
X (1− α) = 0.

Proof. FX(−x) = F−X(−x) = Pr(−X ≤ −x) = Pr(X ≥ x) = 1− FX(x).

Let x = F−1
X (α). Then

−F−1
X (1− α) = −F−1

X (1− FX(x)) = −F−1
X (FX(−x)) = x = F−1

X (α).
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Theorem 10. Let X and S2 be the mean and variance of a sample from N(µ, σ). Then

X − µ

S/
√
n

∼ t(n− 1).

Proof sketch. Use Theorem 7 and

X−µ
σ/

√
n√

(n−1)S2/σ2

n−1

=
X − µ

S/
√
n
.

4 Distribution of Paired Statistical Scores

Theorem 11. Let X and S2
X be the mean and variance of a sample [X1, . . . , Xn] from

distribution N(µX , σ). Let Y and S2
Y be the mean and variance of sample [Y1, . . . , Ym]

from distribution N(µY , σ). The two samples are independent. Then for

S2
p :=

(n− 1)S2
X + (m− 1)S2

Y

n+m− 2
, T :=

(X − Y )− (µX − µY )

Sp

√
1
n
+ 1

m

,

we have T ∼ t(n+m− 2). (S2
p is called pooled sample variance.)

Proof sketch. X,Y , SX , SY are independent by Theorem 7.3.

X ∼ N(µX , σ/
√
n) and Y ∼ N(µY , σ/

√
m) (by Theorem 7.1)

=⇒ (X − Y )− (µX − µY )

σ
√

1
n
+ 1

m

∼ N(0, 1). (by Lemmas 5 and 6)

(n− 1)S2
X/σ

2 ∼ χ2(n− 1) and (m− 1)S2
Y /σ

2 ∼ χ2(m− 1) (by Theorem 7.2)

=⇒ (n+m− 2)S2
p/σ

2 ∼ χ2(n+m− 2).

Lemma 12. For i ∈ {1, . . . , k}, let Xi := [Xi,1, . . . , Xi,ni
] be a sample from N(µi, σi).

The samples are independent. Let a1, . . . , ak be non-negative constants. Let S2
i be the

variance of Xi. Let

r :=

(∑k
i=1 aiS

2
i

)2
∑k

i=1
(aiS2

i )
2

ni−1

L :=
r∑k

i=1 aiσ
2
i

k∑
i=1

aiS
2
i .

Then L is approximately distributed χ2(r).

Proof. The meaning of approximate and the ‘proof’ can be found at [6, 8].

Theorem 13. Let X and S2
X be the mean and variance of a sample [X1, . . . , Xn] from

distribution N(µX , σX). Let Y and S2
Y be the mean and variance of sample [Y1, . . . , Ym]

from distribution N(µY , σY ). The samples [X1, . . . , Xn] and [Y1, . . . , Ym] are independent.
Then for

r :=
(S2

X/n+ S2
Y /m)2

(S2
X/n)2

n−1
+

(S2
Y /m)2

m−1

and T :=
(X − Y )− (µX − µY )√

S2
X/n+ S2

Y /m
,

T approximately follows t(r).
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Proof sketch. T = Z/(
√

L/r), where

Z :=
(X − Y )− (µX − µY )√

σ2
X/n+ σ2

Y /m
∼ N(0, 1), L :=

r

σ2
X/n+ σ2

Y /m

(
S2
X

n
+

S2
Y

m

)
,

and L approximately follows χ2(r) by Lemma 12.

Definition 5. Let X and Y be independent randvars, where X ∼ χ2(u) and Y ∼ χ2(v).

Then the distribution of
X/u

Y/v
is called the F distribution with parameters u and v.

Lemma 14. Let R be an F distribution with parameters u and v. Then R−1 is an F dis-
tribution with parameters v and u. Furthermore, ∀x ∈ R>0, we get FR(x)+FR−1(x−1) = 1,
and ∀α ∈ [0, 1], we get F−1

R (α)F−1
R−1(1− α) = 1.

Proof. FR−1(x−1) = Pr(R−1 ≤ x−1) = Pr(R ≥ x) = 1− FR(x).

Let x := F−1
R (α). Then

F−1
R−1(1− α) = F−1

R−1(1− FR(x)) = F−1
R−1(FR−1(x−1)) = x−1 = 1/F−1

R (α).

5 Correlated Data

Let X and Y be random variables over a joint distribution D. Let [(Xi, Yi) : i ∈
{1, . . . , n}] be an IID sample drawn from D. Let X := (1/n)

∑n
i=1 Xi and Y :=

(1/n)
∑n

i=1 Yi.

Theorem 15. Cov(X,Y ) = Cov(X1, Y1)/n.

Definition 6 (Sample covariance).

CX,Y :=
1

n− 1

n∑
i=1

(Xi −X)(Yi − Y ).

Claim 16. For any real numbers (or random variables) a and b,

CX,Y =
1

n− 1

(
n∑

i=1

(Xi − a)(Yi − b)− n(X − a)(Y − b)

)
.

Theorem 17. E(CX,Y ) = Cov(X1, Y1).

Proof. Let µX := E(X1) and µY := E(Y1). Then

E(CX,Y ) =
1

n− 1

(
n∑

i=1

E((Xi − µX)(Yi − µY ))− nE((X − µX)(Y − µY ))

)
(by Claim 16)

=
1

n− 1

(
n∑

i=1

Cov(Xi, Yi)− nCov(X,Y )

)
= Cov(X1, Y1).

Let VX and VY be the sample variance of [X1, . . . , Xn] and [Y1, . . . , Yn], respectively.
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Lemma 18.

(n− 1)2(VXVY − C2
X,Y ) =

∑
1≤i<j≤n

((Xi −X)(Yj − Y )− (Xj −X)(Yi − Y ))2.

Proof. Let Wi := Xi −X and Zi := Yi − Y . Then

(n− 1)2(VXVY − C2
X,Y ) =

(
n∑

i=1

W 2
i

)(
n∑

i=1

Z2
i

)
−

(
n∑

i=1

WiZi

)2

=
n∑

i=1

n∑
j=1

(W 2
i Z

2
j −WiZiWjZj) =

n∑
i=1

n∑
j=1

WiZj(WiZj −WjZi)

=
∑

1≤i<j≤n

(WiZj −WjZi)
2.

Lemma 19.

E(VXVY − C2
X,Y ) =

n

n− 1
(Var(X1)Var(Y1)− Cov(X1, Y1)) .

Proof. Let Wi := Xi −X and Zi := Yi − Y . Then

(n− 1)2 E(VXVY − C2
X,Y ) =

∑
1≤i<j≤n

E((WiZj −WjZi)
2)

=
∑

1≤i<j≤n

(E(W 2
i Z

2
j ) + E(W 2

j Z
2
i )− 2E(WiWjZiZj))

=
∑

1≤i<j≤n

(E(W 2
i ) E(Z

2
j ) + E(W 2

j ) E(Z
2
i )− 2E(WiZi) E(WjZj))

(samples are independent)

=
∑

1≤i<j≤n

(Var(X1)Var(Y1) + Var(X1)Var(Y1)− 2Cov(X1, Y1)
2)

= n(n− 1)(Var(X1)Var(Y1)− Cov(X1, Y1)
2).

6 Linear Regression

Let [(xi, yi) : i ∈ {1, . . . , n}] be our data. Define

SSE(α, β) :=
n∑

i=1

(yi − α− βxi)
2.

• Let X and VX be the mean and variance of sample [x1, . . . , xn].

• Let Y and VY be the mean and variance of sample [y1, . . . , yn].

• Let CX,Y be the covariance of sample [(xi, yi) : i ∈ {1, . . . , n}].

Theorem 20.

SSE(α, β) = n(α+ βX − Y )2 + (n− 1)VX

(
β − CX,Y

VX

)2

+ (n− 1)

(
VY −

C2
X,Y

VX

)
.

Hence, SSE is minimized at (α̂, β̂), where β̂ := CX,Y /VX and α̂ := Y − β̂X.
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6.1 Independent errors with mean 0

Let [x1, . . . , xn] be constants and [e1, . . . , en] be IID random variables. For all i ∈
{1, . . . , n}, let E(ei) = 0, Var(ei) = σ2, and yi := α + βxi + ei.

• Let x and VX be the mean and variance of sample [x1, . . . , xn].

• Let y and VY be the mean and variance of sample [y1, . . . , yn].

• Let e and VE be the mean and variance of sample [e1, . . . , en].

• Let CX,Y be the covariance of sample [(xi, yi) : i ∈ {1, . . . , n}].

• Let CX,E be the covariance of sample [(xi, ei) : i ∈ {1, . . . , n}].

Lemma 21.

CX,E =
n∑

i=1

xi − x

n− 1
ei y = α + βx+ e

CX,Y = βVX + CX,E VY = β2VX + VE + 2βCX,E

Lemma 22.

β̂ = β +
CX,E

VX

SSE(α̂, β̂) = (n− 1)

(
VE −

C2
X,E

VX

)
For any t ∈ R,

α̂ + β̂t = (α + βt) + e+
t− x

VX

CX,E = (α + βt) +
n∑

i=1

(
1

n
+

(t− x)(xi − x)

VX(n− 1)

)
ei.

Lemma 23. E(CX,E) = 0 and Var(CX,E) = E(C2
X,E) = σ2VX/(n− 1).

Lemma 24. E(SSE(α̂, β̂)) = (n− 2)σ2.

Lemma 25. For any t ∈ R, E(β̂) = β, E(α̂ + β̂t) = α + βt,

Var(β̂) =
σ2

(n− 1)VX

, Var(α̂ + β̂t) = σ2

(
1

n
+

(t− x)2

(n− 1)VX

)
.

Lemma 26. Cov(y, β̂) = Cov(e, CX,E) = 0.

Proof.

Cov(y, β̂) =
Cov(e, CX,E)

VX

=
Cov(ne, (n− 1)CX,E)

n(n− 1)VX

.

Cov(ne, (n− 1)CX,E) = Cov

(
n∑

i=1

ei,

n∑
j=1

(xj − x)ej

)

=
n∑

i=1

n∑
j=1

Cov(ei, (xj − x)ej) =
n∑

i=1

(xi − x)σ2 = 0.
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6.2 IID normal errors with mean 0

Let [e1, . . . , en] be drawn IID from N(0, σ).

Lemma 27.

y ∼ N

(
α + βx,

σ√
n

)
β̂ ∼ N

(
β,

σ√
(n− 1)VX

)

Lemma 28. y, β̂, and SSE(α̂, β̂) are independent. SSE(α̂, β̂)/σ2 ∼ χ2(n− 2).

Proof. [1] gives a proof idea and lists references to proofs.

Lemma 29.√
(n− 2)(n− 1)VX

SSE(α̂, β̂)
(β̂ − β) ∼ tn−2.
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