## Parameter Estimation

### Eklavya Sharma

Our aim is to find out something about a distribution by observing a sample.

**Definition 1** (Sample). For a distribution D, a sample of size n from D is the sequence  $[X_1, X_2, \ldots, X_n]$  of n IID random variables, each having distribution D.

**Notation:** For a random variable X having distribution D and any function g, define  $\mathrm{E}(g(D)) := \mathrm{E}(g(X))$ . (Hence,  $\mathrm{Var}(D) := \mathrm{Var}(X)$ .)

## 1 Bias and Variance of Estimators

**Definition 2** (Sample mean and variance). Let  $[X_1, \ldots, X_n]$  be a sample.

- 1. The mean of the sample is defined as  $\overline{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$ .
- 2. The variance of the sample is defined as  $V_X := \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$ .
- 3. The standard-deviation of the sample is defined as  $S_X := \sqrt{V_X}$ .

**Theorem 1.** Let  $\overline{X}$  be the mean of a sample from D. Then  $E(\overline{X}) = E(D)$  and  $Var(\overline{X}) = Var(D)/n$ .

Claim 2. Let  $\overline{X}$  and  $S^2$  be the mean and variance, respectively, of sample  $[X_1, \ldots, X_n]$ . Let a be any random variable (or a constant). Then

$$S^{2} = \frac{1}{n-1} \left( \sum_{i=1}^{n} (X_{i} - a)^{2} - n(\overline{X} - a)^{2} \right).$$

(Note that setting  $a = \overline{X}$  gives the definition of  $S^2$ .)

**Theorem 3.** Let V be the variance of sample  $[X_1, \ldots, X_n]$  from D. Let  $\mu := E(D)$  and  $\sigma^2 := Var(D)$ . Then  $E(V) = \sigma^2$  and  $Var(V) = \frac{E((D-\mu)^4)}{n} - \frac{\sigma^4(n-3)}{n(n-1)}$ .

Proof.

$$E(V) = \frac{1}{n-1} \left( \sum_{i=1}^{n} E((X_i - \mu)^2) - n E((\overline{X} - \mu)^2) \right)$$

$$= \frac{1}{n-1} \left( \sum_{i=1}^{n} Var(X_i) - n Var(\overline{X}) \right) = \sigma^2.$$
(by Claim 2)

The expression for Var(V) is from [7].

## 2 Distribution of Estimators

**Definition 3.** Let Z be a random variable and  $S := [X_1, X_2, \ldots]$  be an infinite sequence of random variables. We say that S converges to Z if  $\lim_{n\to\infty} F_{X_n}(x) = F_Z(x)$  for all  $x \in \mathbb{R}$  where  $F_Z$  is continuous.

**Theorem 4** (Central Limit Theorem). Let  $X_1, X_2, \ldots$  be IID randvars having mean  $\mu$  and variance  $\sigma^2$ . Let  $\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$ . Let  $Y_n := \sqrt{n/\sigma}(\overline{X}_n - \mu)$ . Then  $[Y_1, Y_2, \ldots]$  converges to N(0,1).

**Lemma 5** (Scaling normal). Let  $X \sim N(\mu, \sigma)$ . Then for any constants a and b,  $aX + b \sim N(a\mu + b, |b|\sigma)$ .

**Lemma 6** ([4]). Let X and Y be independent randvars where  $X \sim N(\mu_X, \sigma_X)$  and  $Y \sim N(\mu_Y, \sigma_Y)$ . Then  $X + Y \sim N(\mu_X + \mu_Y, \sqrt{\sigma_X^2 + \sigma_Y^2})$ .

**Theorem 7.** Let  $[X_1, \ldots, X_n]$  be a sample from  $N(\mu, \sigma)$ . Let  $\overline{X}$  and  $S^2$  be the mean and variance of the sample. Then

- 1.  $\overline{X} \sim N(\mu, \sigma/\sqrt{n})$ .
- 2.  $\frac{n-1}{\sigma^2}S^2 \sim \chi^2(n-1)$ .
- 3.  $\overline{X}$  and  $S^2$  are independent.

Here  $\chi^2(n-1)$  is the Chi-Squared distribution with n-1 degrees of freedom.

*Proof.* Part 1 follows from Lemmas 5 and 6.

[3] proves parts 2 and 3. Alternatively, [5] proves part 3 and [2] proves part 2.  $\Box$ 

## 3 Distribution of Statistical Scores

**Definition 4.** Let  $Z \sim N(0,1)$  and  $U \sim \chi^2(r)$  be independent randvars. Let  $T := Z/\sqrt{U/r}$ . Then T's distribution is called the Student's t distribution with r degrees of freedom.

**Lemma 8** (t distribution is symmetric). Let  $T \sim t(r)$ . Then T and -T have the same distribution.

*Proof.* Let 
$$Z \sim N(0,1)$$
 and  $U \sim \chi^2(r)$  be independent randvars and  $T := Z/\sqrt{U/r}$ .  
Then  $T \sim t(r)$ . Since  $-Z \sim N(0,1)$ , so  $-T = (-Z)/\sqrt{U/r} \sim t(r)$ .

**Lemma 9** (Implications of symmetry). Let X be a continuous random variable such that X and -X have the same distribution. Then,  $\forall x \in \mathbb{R}$ , we get  $F_X(x) + F_X(-x) = 1$ , and  $\forall \alpha \in [0,1]$ , we get  $F_X^{-1}(\alpha) + F_X^{-1}(1-\alpha) = 0$ .

Proof. 
$$F_X(-x) = F_{-X}(-x) = \Pr(-X \le -x) = \Pr(X \ge x) = 1 - F_X(x)$$
.  
Let  $x = F_X^{-1}(\alpha)$ . Then
$$-F_X^{-1}(1-\alpha) = -F_X^{-1}(1-F_X(x)) = -F_X^{-1}(F_X(-x)) = x = F_X^{-1}(\alpha).$$

**Theorem 10.** Let  $\overline{X}$  and  $S^2$  be the mean and variance of a sample from  $N(\mu, \sigma)$ . Then

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1).$$

*Proof sketch.* Use Theorem 7 and 
$$\frac{\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1)S^2/\sigma^2}{n-1}}} = \frac{\overline{X} - \mu}{S / \sqrt{n}}.$$

## 4 Distribution of Paired Statistical Scores

**Theorem 11.** Let  $\overline{X}$  and  $S_X^2$  be the mean and variance of a sample  $[X_1, \ldots, X_n]$  from distribution  $N(\mu_X, \sigma)$ . Let  $\overline{Y}$  and  $S_Y^2$  be the mean and variance of sample  $[Y_1, \ldots, Y_m]$  from distribution  $N(\mu_Y, \sigma)$ . The two samples are independent. Then for

$$S_p^2 := \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}, \qquad T := \frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}},$$

we have  $T \sim t(n+m-2)$ .  $(S_p^2 \text{ is called pooled sample variance.})$ 

*Proof sketch.*  $\overline{X}$ ,  $\overline{Y}$ ,  $S_X$ ,  $S_Y$  are independent by Theorem 7.3.

$$\overline{X} \sim N(\mu_X, \sigma/\sqrt{n})$$
 and  $\overline{Y} \sim N(\mu_Y, \sigma/\sqrt{m})$  (by Theorem 7.1)
$$\implies \frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{\sigma\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim N(0, 1).$$
 (by Lemmas 5 and 6)

$$(n-1)S_X^2/\sigma^2 \sim \chi^2(n-1)$$
 and  $(m-1)S_Y^2/\sigma^2 \sim \chi^2(m-1)$  (by Theorem 7.2)   
  $\implies (n+m-2)S_p^2/\sigma^2 \sim \chi^2(n+m-2)$ .

**Lemma 12.** For  $i \in \{1, ..., k\}$ , let  $\mathbf{X}_i := [X_{i,1}, ..., X_{i,n_i}]$  be a sample from  $N(\mu_i, \sigma_i)$ . The samples are independent. Let  $a_1, ..., a_k$  be non-negative constants. Let  $S_i^2$  be the variance of  $\mathbf{X}_i$ . Let

$$r := \frac{\left(\sum_{i=1}^{k} a_i S_i^2\right)^2}{\sum_{i=1}^{k} \frac{(a_i S_i^2)^2}{n_i - 1}} \qquad \qquad L := \frac{r}{\sum_{i=1}^{k} a_i \sigma_i^2} \sum_{i=1}^{k} a_i S_i^2.$$

Then L is approximately distributed  $\chi^2(r)$ .

*Proof.* The meaning of approximate and the 'proof' can be found at [6, 8].

**Theorem 13.** Let  $\overline{X}$  and  $S_X^2$  be the mean and variance of a sample  $[X_1, \ldots, X_n]$  from distribution  $N(\mu_X, \sigma_X)$ . Let  $\overline{Y}$  and  $S_Y^2$  be the mean and variance of sample  $[Y_1, \ldots, Y_m]$  from distribution  $N(\mu_Y, \sigma_Y)$ . The samples  $[X_1, \ldots, X_n]$  and  $[Y_1, \ldots, Y_m]$  are independent. Then for

$$r:=\frac{(S_X^2/n+S_Y^2/m)^2}{\frac{(S_X^2/n)^2}{n-1}+\frac{(S_Y^2/m)^2}{m-1}} \qquad and \qquad T:=\frac{(\overline{X}-\overline{Y})-(\mu_X-\mu_Y)}{\sqrt{S_X^2/n+S_Y^2/m}},$$

T approximately follows t(r).

Proof sketch.  $T = Z/(\sqrt{L/r})$ , where

$$Z := \frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{\sqrt{\sigma_X^2/n + \sigma_Y^2/m}} \sim N(0, 1), \qquad L := \frac{r}{\sigma_X^2/n + \sigma_Y^2/m} \left(\frac{S_X^2}{n} + \frac{S_Y^2}{m}\right),$$

and L approximately follows  $\chi^2(r)$  by Lemma 12.

**Definition 5.** Let X and Y be independent randvars, where  $X \sim \chi^2(u)$  and  $Y \sim \chi^2(v)$ . Then the distribution of  $\frac{X/u}{Y/v}$  is called the F distribution with parameters u and v.

**Lemma 14.** Let R be an F distribution with parameters u and v. Then  $R^{-1}$  is an F distribution with parameters v and u. Furthermore,  $\forall x \in \mathbb{R}_{>0}$ , we get  $F_R(x) + F_{R^{-1}}(x^{-1}) = 1$ , and  $\forall \alpha \in [0,1]$ , we get  $F_R^{-1}(\alpha)F_{R^{-1}}^{-1}(1-\alpha) = 1$ .

Proof. 
$$F_{R^{-1}}(x^{-1}) = \Pr(R^{-1} \le x^{-1}) = \Pr(R \ge x) = 1 - F_R(x).$$
  
Let  $x := F_R^{-1}(\alpha)$ . Then
$$F_{R^{-1}}^{-1}(1 - \alpha) = F_{R^{-1}}^{-1}(1 - F_R(x)) = F_{R^{-1}}^{-1}(F_{R^{-1}}(x^{-1})) = x^{-1} = 1/F_R^{-1}(\alpha).$$

### 5 Correlated Data

Let X and Y be random variables over a joint distribution D. Let  $[(X_i, Y_i) : i \in \{1, \ldots, n\}]$  be an IID sample drawn from D. Let  $\overline{X} := (1/n) \sum_{i=1}^n X_i$  and  $\overline{Y} := (1/n) \sum_{i=1}^n Y_i$ .

**Theorem 15.**  $Cov(\overline{X}, \overline{Y}) = Cov(X_1, Y_1)/n$ .

**Definition 6** (Sample covariance).

$$C_{X,Y} := \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}).$$

Claim 16. For any real numbers (or random variables) a and b,

$$C_{X,Y} = \frac{1}{n-1} \left( \sum_{i=1}^{n} (X_i - a)(Y_i - b) - n(\overline{X} - a)(\overline{Y} - b) \right).$$

Theorem 17.  $E(C_{X,Y}) = Cov(X_1, Y_1)$ .

*Proof.* Let  $\mu_X := E(X_1)$  and  $\mu_Y := E(Y_1)$ . Then

$$E(C_{X,Y}) = \frac{1}{n-1} \left( \sum_{i=1}^{n} E((X_i - \mu_X)(Y_i - \mu_Y)) - n E((\overline{X} - \mu_X)(\overline{Y} - \mu_Y)) \right)$$
(by Claim 16)
$$= \frac{1}{n-1} \left( \sum_{i=1}^{n} Cov(X_i, Y_i) - n Cov(\overline{X}, \overline{Y}) \right) = Cov(X_1, Y_1).$$

Let  $V_X$  and  $V_Y$  be the sample variance of  $[X_1, \ldots, X_n]$  and  $[Y_1, \ldots, Y_n]$ , respectively.

#### Lemma 18.

$$(n-1)^{2}(V_{X}V_{Y}-C_{X,Y}^{2})=\sum_{1\leq i\leq j\leq n}((X_{i}-\overline{X})(Y_{j}-\overline{Y})-(X_{j}-\overline{X})(Y_{i}-\overline{Y}))^{2}.$$

*Proof.* Let  $W_i := X_i - \overline{X}$  and  $Z_i := Y_i - \overline{Y}$ . Then

$$(n-1)^{2}(V_{X}V_{Y} - C_{X,Y}^{2}) = \left(\sum_{i=1}^{n} W_{i}^{2}\right) \left(\sum_{i=1}^{n} Z_{i}^{2}\right) - \left(\sum_{i=1}^{n} W_{i}Z_{i}\right)^{2}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} (W_{i}^{2}Z_{j}^{2} - W_{i}Z_{i}W_{j}Z_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} W_{i}Z_{j}(W_{i}Z_{j} - W_{j}Z_{i})$$

$$= \sum_{1 \leq i < j \leq n} (W_{i}Z_{j} - W_{j}Z_{i})^{2}.$$

#### Lemma 19.

$$E(V_X V_Y - C_{X,Y}^2) = \frac{n}{n-1} \left( Var(X_1) Var(Y_1) - Cov(X_1, Y_1) \right).$$

*Proof.* Let  $W_i := X_i - \overline{X}$  and  $Z_i := Y_i - \overline{Y}$ . Then

$$(n-1)^{2} E(V_{X}V_{Y} - C_{X,Y}^{2}) = \sum_{1 \leq i < j \leq n} E((W_{i}Z_{j} - W_{j}Z_{i})^{2})$$

$$= \sum_{1 \leq i < j \leq n} (E(W_{i}^{2}Z_{j}^{2}) + E(W_{j}^{2}Z_{i}^{2}) - 2E(W_{i}W_{j}Z_{i}Z_{j}))$$

$$= \sum_{1 \leq i < j \leq n} (E(W_{i}^{2}) E(Z_{j}^{2}) + E(W_{j}^{2}) E(Z_{i}^{2}) - 2E(W_{i}Z_{i}) E(W_{j}Z_{j}))$$

(samples are independent)

$$= \sum_{1 \le i < j \le n} (\operatorname{Var}(X_1) \operatorname{Var}(Y_1) + \operatorname{Var}(X_1) \operatorname{Var}(Y_1) - 2 \operatorname{Cov}(X_1, Y_1)^2)$$

$$= n(n-1)(\operatorname{Var}(X_1) \operatorname{Var}(Y_1) - \operatorname{Cov}(X_1, Y_1)^2).$$

# 6 Linear Regression

Let  $[(x_i, y_i) : i \in \{1, \dots, n\}]$  be our data. Define

$$SSE(\alpha, \beta) := \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2.$$

- Let  $\overline{X}$  and  $V_X$  be the mean and variance of sample  $[x_1, \ldots, x_n]$ .
- Let  $\overline{Y}$  and  $V_Y$  be the mean and variance of sample  $[y_1, \ldots, y_n]$ .
- Let  $C_{X,Y}$  be the covariance of sample  $[(x_i, y_i) : i \in \{1, \dots, n\}]$ .

#### Theorem 20.

$$SSE(\alpha, \beta) = n(\alpha + \beta \overline{X} - \overline{Y})^2 + (n-1)V_X \left(\beta - \frac{C_{X,Y}}{V_X}\right)^2 + (n-1)\left(V_Y - \frac{C_{X,Y}^2}{V_X}\right).$$

Hence, SSE is minimized at  $(\widehat{\alpha}, \widehat{\beta})$ , where  $\widehat{\beta} := C_{X,Y}/V_X$  and  $\widehat{\alpha} := \overline{Y} - \widehat{\beta}\overline{X}$ .

### 6.1 Independent errors with mean 0

Let  $[x_1, \ldots, x_n]$  be constants and  $[e_1, \ldots, e_n]$  be IID random variables. For all  $i \in \{1, \ldots, n\}$ , let  $E(e_i) = 0$ ,  $Var(e_i) = \sigma^2$ , and  $y_i := \alpha + \beta x_i + e_i$ .

- Let  $\overline{x}$  and  $V_X$  be the mean and variance of sample  $[x_1, \ldots, x_n]$ .
- Let  $\overline{y}$  and  $V_Y$  be the mean and variance of sample  $[y_1, \ldots, y_n]$ .
- Let  $\overline{e}$  and  $V_E$  be the mean and variance of sample  $[e_1, \ldots, e_n]$ .
- Let  $C_{X,Y}$  be the covariance of sample  $[(x_i, y_i) : i \in \{1, \dots, n\}]$ .
- Let  $C_{X,E}$  be the covariance of sample  $[(x_i, e_i) : i \in \{1, \dots, n\}]$ .

#### Lemma 21.

$$C_{X,E} = \sum_{i=1}^{n} \frac{x_i - \overline{x}}{n-1} e_i \qquad \overline{y} = \alpha + \beta \overline{x} + \overline{e}$$

$$C_{X,Y} = \beta V_X + C_{X,E} \qquad V_Y = \beta^2 V_X + V_E + 2\beta C_{X,E}$$

### Lemma 22.

$$\widehat{\beta} = \beta + \frac{C_{X,E}}{V_X}$$
 SSE $(\widehat{\alpha}, \widehat{\beta}) = (n-1)\left(V_E - \frac{C_{X,E}^2}{V_X}\right)$ 

For any  $t \in \mathbb{R}$ ,

$$\widehat{\alpha} + \widehat{\beta}t = (\alpha + \beta t) + \overline{e} + \frac{t - \overline{x}}{V_X}C_{X,E} = (\alpha + \beta t) + \sum_{i=1}^n \left(\frac{1}{n} + \frac{(t - \overline{x})(x_i - \overline{x})}{V_X(n-1)}\right)e_i.$$

**Lemma 23.**  $E(C_{X,E}) = 0$  and  $Var(C_{X,E}) = E(C_{X,E}^2) = \sigma^2 V_X/(n-1)$ .

Lemma 24.  $E(SSE(\widehat{\alpha}, \widehat{\beta})) = (n-2)\sigma^2$ .

**Lemma 25.** For any  $t \in \mathbb{R}$ ,  $E(\widehat{\beta}) = \beta$ ,  $E(\widehat{\alpha} + \widehat{\beta}t) = \alpha + \beta t$ ,

$$\operatorname{Var}(\widehat{\beta}) = \frac{\sigma^2}{(n-1)V_X}, \qquad \operatorname{Var}(\widehat{\alpha} + \widehat{\beta}t) = \sigma^2 \left(\frac{1}{n} + \frac{(t-\overline{x})^2}{(n-1)V_X}\right).$$

Lemma 26.  $Cov(\overline{y}, \widehat{\beta}) = Cov(\overline{e}, C_{X,E}) = 0.$ 

Proof.

$$\operatorname{Cov}(\overline{y}, \widehat{\beta}) = \frac{\operatorname{Cov}(\overline{e}, C_{X,E})}{V_X} = \frac{\operatorname{Cov}(n\overline{e}, (n-1)C_{X,E})}{n(n-1)V_X}.$$

$$\operatorname{Cov}(n\overline{e}, (n-1)C_{X,E}) = \operatorname{Cov}\left(\sum_{i=1}^{n} e_i, \sum_{j=1}^{n} (x_j - \overline{x})e_j\right)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}(e_i, (x_j - \overline{x})e_j) = \sum_{i=1}^{n} (x_i - \overline{x})\sigma^2 = 0.$$

### 6.2 IID normal errors with mean 0

Let  $[e_1, \ldots, e_n]$  be drawn IID from  $N(0, \sigma)$ .

Lemma 27.

$$\overline{y} \sim N\left(\alpha + \beta \overline{x}, \frac{\sigma}{\sqrt{n}}\right)$$
  $\widehat{\beta} \sim N\left(\beta, \frac{\sigma}{\sqrt{(n-1)V_X}}\right)$ 

**Lemma 28.**  $\overline{y}$ ,  $\widehat{\beta}$ , and  $SSE(\widehat{\alpha}, \widehat{\beta})$  are independent.  $SSE(\widehat{\alpha}, \widehat{\beta})/\sigma^2 \sim \chi^2(n-2)$ .

*Proof.* [1] gives a proof idea and lists references to proofs.

Lemma 29.

$$\sqrt{\frac{(n-2)(n-1)V_X}{\mathrm{SSE}(\widehat{\alpha},\widehat{\beta})}}(\widehat{\beta}-\beta) \sim t_{n-2}.$$

### References

[1] Confidence intervals for regression parameters. Penn State STAT 415. URL: https://online.stat.psu.edu/stat415/lesson/7/7.5.

- [2] Sampling distribution of sample variance. Penn State STAT 414. URL: https://online.stat.psu.edu/stat414/lesson/26/26.3.
- [3] Show  $\overline{X}$  and  $S^2$  are independent. Duke STA 611 Fall 2019 Lecture 12. URL: http://www2.stat.duke.edu/courses/Fall19/sta611.01/Lecture/lec12\_mean\_var\_indep.pdf.
- [4] Sum of normally distributed random variables. Wikipedia. URL: https://en.wikipedia.org/wiki/Sum\_of\_normally\_distributed\_random\_variables.
- [5] guy. Proof of the independence of the sample mean and sample variance. Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/50598.
- [6] DGK. Proof and precise formulation of Welch-Satterthwaite equation. Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/3189589.
- [7] user940. Variance of sample variance? Mathematics Stack Exchange, October 2011. URL: https://math.stackexchange.com/q/73080.
- [8] B. L. Welch. The generalization of 'student's' problem when several different population variances are involved. *Biometrika*, 34(1/2):28–35, 1947. doi:10.2307/2332510.