Inverse of $x \mapsto x \ln x$

Eklavya Sharma

We want to bound the inverse of $x \mapsto x \ln x$, i.e., if $y = x \ln x$, then we want to lower and upper bound x by simple functions of y.

Our main result is that $x \in \Theta(y/\ln y)$. We also prove tighter non-asymptotic bounds.

1 Preliminaries

Lemma 1 (Log bounds [1]).

$$\forall x \in \mathbb{R}_{>0}, \frac{x-1}{x} \le \ln x \le x - 1.$$

Lemma 2. Let $y = x \ln x$. Then $y > 0 \iff x > 1$ and $y \ge e \iff x \ge e$.

Proof.

$$x < 1 \implies \ln x < 0 \implies y = x \ln x < 0.$$

$$x > 1 \implies \ln x > 0 \implies y = x \ln x > 0.$$

Therefore, $x \ge 1 \iff y \ge 0$.

$$x < e \implies \ln x < 1 \implies y = x \ln x < e$$
.

$$x \ge e \implies \ln x \ge 1 \implies y = x \ln x \ge e$$
.

Therefore, $x \ge e \iff y \ge e$.

Theorem 3. Let $x \ge 1$ and $y = x \ln x$. Then

$$1 < \ell \le x \le u \implies \frac{y}{\ln u} \le x \le \frac{y}{\ln \ell}$$
.

Proof.

$$\ell \le x \le u \implies \ln \ell \le \ln x \le \ln u$$

$$\implies x \ln \ell \le y \le x \ln u \implies \frac{y}{\ln u} \le x \le \frac{y}{\ln \ell}$$

The above theorem is useful because it helps us refine the bounds that we find.

2 Bounds when $y \ge e$

Theorem 4. Let $y \ge e$ and $y = x \ln x$. Then $x \le y$.

Proof. By Lemma 2,
$$y \ge e \iff x \ge e$$
. $x \ge e \implies \ln x \ge 1 \implies y \ge x$.

Theorem 5. Let $x \ge e$ and $y = x \ln x$. Then $x \ge y/(\ln y)$.

Proof. Set
$$u = y$$
 and use Theorems 3 and 4.

Theorem 6. Let y > 1 and $y = x \ln x$. Then

$$x \le \frac{e+1}{e} \frac{y}{\ln y}.$$

Proof. By Lemma 2, x > 1.

$$\frac{x \ln y}{y} = \frac{x(\ln x + \ln \ln x)}{x \ln x} = 1 + \frac{\ln \ln x}{\ln x}$$

Let $t = \ln x$. Then t > 0 and $(x \ln y)/y = 1 + (\ln t)/t$. Define $g(t) = (\ln t)/t$. Then

$$g'(t) = \frac{1 - \ln t}{t^2}$$

g'(t) is positive for t < e, negative for t > e and g'(e) = 0. Therefore, g(t) is maximized at t = e, and the maximum value is g(e) = 1/e. Therefore,

$$\frac{x \ln y}{y} = 1 + g(\ln x) \le 1 + \frac{1}{e} \implies x \le \frac{e+1}{e} \frac{y}{\ln y}$$

3 Bounds when $y \ge 0$

Theorem 7. Let $y = x \ln x$. Then $x \le y + 1$.

Proof.
$$\frac{x-1}{x} \le \ln x \implies x-1 \le y$$
.

Define

$$\ell(y) = \begin{cases} y/\ln(y+1) & y \neq 0\\ 1 & y = 0 \end{cases}.$$

Note that $\ell(y)$ is continuous over $y \in (-1, \infty)$.

Theorem 8. Let $x \ge 1$ and $y = x \ln x$. Then $\ell(y) \le x$.

Proof. This is true for x = 1. For x > 1, set u = y + 1 and use Theorems 3 and 7.

Theorem 9. Let $x \ge 1$ and $y = x \ln x$. Then $x \le 2\ell(y) - 1$.

Proof. This is true for x = 1, so let x > 1. By Lemma 2, y > 0.

$$x \le 2\ell(y) - 1 \iff \frac{2y}{\ln(y+1)} \ge x + 1 \iff \frac{2x \ln x}{x+1} \ge \ln(x \ln x + 1)$$

Define q(x) as

$$g(x) = \frac{2x \ln x}{x+1} - \ln(x \ln x + 1).$$

To prove that $x \leq 2\ell(y) - 1$, we need to prove that $g(x) \geq 0$.

Note that g(1) = 0. If we prove that $g'(x) \ge 0$ for all $x \ge 1$, then that would imply $g(x) \ge 0$ for all $x \ge 1$.

$$g'(x) = 2\left(\frac{\ln x + 1}{x + 1} - \frac{x \ln x}{(x + 1)^2}\right) - \frac{\ln x + 1}{x \ln x + 1}$$
$$= \frac{x^2(\ln x - 1) + 2x(\ln x)^2 + \ln x + 1}{(x + 1)^2(x \ln x + 1)}$$

$$x^{2}(\ln x - 1) + 2x(\ln x)^{2} + \ln x + 1$$

$$\geq x^{2} \left(\frac{x - 1}{x} - 1\right) + 2x \left(\frac{x - 1}{x}\right)^{2} + \frac{x - 1}{x} + 1 \qquad \text{(since } x > 1 \text{ and by Lemma 1)}$$

$$= x + \frac{1}{x} - 2 = \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^{2} \geq 0$$

Hence, for
$$x \ge 1$$
, $g'(x) \ge 0 \implies g(x) \ge 0 \implies x \le 2\ell(y) - 1$.

Theorem 10. Let $y = x \ln x$. Then $\ell(y) - 1 \le x$.

$$Proof.$$
 (TODO)

References

[1] Eklavya Sharma. Theoremdep: Bound on log. URL: https://sharmaeklavya2.github.io/theoremdep/nodes/bounds/log-bound.html.