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Abstract

This document contains a list of all linear algebra results that I needed for my
Operations Research coursework at UIUC. The target audience of this document
is Operations Research students. It can be helpful to page these results into your
brain before a linear-algebra-heavy exam/project, and proving these results yourself
(except those marked DWAP) is a good exercise.

Notation:

• DWAP abbreviates “Don’t Worry About the Proof”.
• For any integer n ≥ 0, define [n] := {1, 2, . . . , n}.
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1 Vector Spaces

1.1 Field

Definition 1 (Field). A field is a set F equipped with two operations + and × that satisfy
some special properties. (you don’t need to know the properties, unless you want to be a
pure mathematician, in which case you can find them here).
Every field has two special elements, called the additive identity (usually denoted by 0),
and the multiplicative identity (usually denoted by 1).
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Theorem 1 (DWAP). The following are fields: Q (the set of rational numbers), R (the
set of real numbers), C (the set of complex numbers).

Theorem 2 (DWAP). Zp := {0, 1, . . . , p− 1} is a field when p is prime, where + and ×
are addition and multiplication modulo p.

1.2 Vector Space

Definition 2. A vector space V over a field F is a set with a vector addition operation
(V × V 7→ V ) and a scalar multiplication operation (F × V 7→ V ) which satisfies some
special properties. (you don’t need to know the properties, unless you want to be a pure
mathematician, in which case you can find them here).
Every vector space has a special vector, called the additive identity, denoted by 0. The
elements of V are called vectors. The elements of F are called scalars.

Definition 3 (Subspace). Let V be a vector space. U is called a subspace of V if U ⊆ V
and U is also a vector space.

Theorem 3 (DWAP). The set of all polynomials over field F forms a vector space.

Theorem 4 (DWAP). For a field F , F d is a vector space.

Definition 4 (Linear and affine combinations). Let V be a vector space over field F . Let
X := {x(i) : i ∈ [k]}, where x(i) ∈ V . Let y =

∑k
i=1 αix

(i), where αi ∈ F .

• y is a called a linear combination of X.
• If

∑k
i=1 αi = 1, then y is called an affine combination of X.

Definition 5 (Span). span(X) is defined as the set of all linear combinations of X. For
sets X and Y of vectors, X is called a spanning set of Y if Y ⊆ span(X).

Lemma 5. If X spans S, then X also spans span(S).

Theorem 6 (DWAP). Let X be a finite subset of F d, where F is a field. Then span(X)
is a vector space.

1.3 Linear Independence and Basis

Definition 6 (Linear independence). A set {x1, x2, . . . , xn} of vectors over field F is
called linearly independent iff

∀(α1, . . . , αn) ∈ F n,

(
n∑

i=1

αixi = 0 =⇒ (αi = 0 ∀i ∈ [n])

)
.

Lemma 7 (Incrementing a linearly independent set). Let X be a linearly independent
set of vectors and y be a vector. If y ̸∈ span(X), then X ∪ {y} is linearly independent.

Lemma 8 (Decrementing a linearly dependent set). Let X be a linearly dependent set
of vectors. Then ∃x ∈ X such that span(X) = span(X − {x}).
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Theorem 9 (DWAP). Let X be a spanning set of vector space V . If Y ⊆ V and
|Y | > |X|, then Y is linearly dependent.

Definition 7 (Basis). Let S be a subset of vector space V . Then X ⊆ S is a basis of S
iff (the following definitions are equivalent):

• X is linearly independent and spans S.
• X is the largest linearly independent subset of S.
• X is a maximal linearly independent subset of S.
• X is the smallest spanning subset of S.
• X is a minimal spanning subset of S.

Equivalence of these definitions can be proven using Theorem 9 and Lemmas 7 and 8.

Lemma 10. If X is a basis of S, then X is also a basis of span(S).

Lemma 11. Let F be a field. Let e(i) ∈ F d be a vector whose ith coordinate is 1 and other
coordinates are 0. Then E := {e(i) : i ∈ [d]} is a basis of F d. (E is called the standard
basis of F d.)

Theorem 12. All bases of S have the same size. This size is called the rank of S (denoted
as rank(S)). If S is a vector space, it’s called the dimension of S (denoted as dim(S)).

Theorem 13. Let X be a set of rank(S) vectors. Then

X is a basis of S ⇐⇒ X is linearly independent ⇐⇒ X spans S.

Theorem 14 (Coordinatization). Let B := {b(1), b(2), . . . , b(k)} be a basis of vector space
V . Then ∀x ∈ V there is a unique tuple (α1, α2, . . . , αk) such that x =

∑k
i=1 αib

(i).

1.4 Elementary Operations

Definition 8. For a sequence X := [x1, . . . , xn] of vectors (over field F ), an elementary
operation is one of the following:

• For i ̸= j and α ∈ F , replace xi by xi + αxj.
• For i ∈ [n] and α ∈ F − {0}, replace xi by αxi.
• For i ̸= j, swap xi and xj.

Lemma 15 (Reversibililty). Let X be a set of vectors. Let Y be the vectors obtained
by applying an elementary operation on X. Then X can be obtained by applying an
elementary operation to Y .

Lemma 16. For a set X of vectors, applying elementary operations doesn’t change
span(X) or rank(X).
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1.5 Affine Independence

Definition 9. A set {x1, x2, . . . , xn} of vectors over field F is called affinely independent
iff

∀(α1, . . . , αn) ∈ F n,

((
n∑

i=1

αi = 0 and
n∑

i=1

αixi = 0

)
=⇒ (αi = 0 ∀i ∈ [n])

)
.

Theorem 17. The set {x(i) : i ∈ [n]} of vectors is affinely independent iff {x(i) − x(n) :
i ∈ [n− 1]} is linearly independent.

Theorem 18. The set {x(i) : i ∈ [n]} of vectors from F d is affinely independent iff
{(x(i), 1) : i ∈ [n]} is linearly independent.

2 Matrices

Lemma 19 (Matrix of elementary rowops). For a sequence S of elementary operations,
there is a unique matrix R such that applying S to rows of any matrix A gives us RA.

Definition 10 (row space, column space). Let F be a field and A ∈ Fm×n be a matrix,
Let rows(A) be the set of all row vectors of A, and cols(A) be the set of all column vectors
of A. Then

• rowSpace(A) := span(rows(A)),
• colSpace(A) := span(cols(A)),
• rank(A) := rowRank(A) := rank(rows(A)),
• colRank(A) := rank(cols(A)).

Theorem 20 (DWAP). For any matrix A, rowRank(A) = colRank(A).

Definition 11 (Nullspace and nullity). For a matrix A ∈ Fm×n, nullSpace(A) := {x ∈
F n : Ax = 0} and nullity(A) := dim(nullSpace(A)).

Theorem 21 (Rank-nullity theorem, DWAP). rank(A) + nullity(A) = | cols(A)|.

Proof sketch. We can show that row space and nullspace are not affected by elementary
row operations on A. Hence, we can assume that A is in Reduced-Row Echelon Form.
There are rank(A) pivot columns in A. Given any value of non-pivot variables, we can
compute the value of pivot variables such that Ax = 0. Hence, nullity(A) = | cols(A)| −
rank(A).

Theorem 22 (DWAP). If V is a subspace of F d, then ∃A such that V = nullSpace(A).

Theorem 23 (DWAP). Basic results on matrix multiplication:

• Matrix multiplication is associative, i.e., (AB)C = A(BC).
• (AB)T = BTAT .
• |AB| = |A||B| if A and B are square (|A| is the determinant of A).
• (AB)−1 = B−1A−1 if A and B are invertible.
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Theorem 24 (Matrix singularity, DWAP). Let A ∈ F n×n. The following are equivalent:

• rank(A) = n.
• 0 is the unique solution to Ax = 0.
• |A| ≠ 0 (|A| is the determinant of A).
• A is invertible, i.e., ∃B ∈ F n×n such that AB = BA = I.

Theorem 25. Let A ∈ F n×n. Then

(A−1)[i, j] =
(−1)i+j

|A|
|A[[n]− {j}, [n]− {i}]|.

Corollary 25.1.[
a1,1 a1,2
a2,1 a2,2

]−1

=
1

a1,1a2,2 − a1,2a2,1

[
a2,2 −a1,2
−a2,1 a1,1

]
.

3 Miscellaneous

Definition 12 (p-norms). For x ∈ Rd,

∥x∥p :=

(
d∑

i=1

|xi|p
)1/p

∥x∥∞ :=
d

max
i=1

|xi| ∥x∥ := ∥x∥2

Definition 13 (Linear combinations). Let V be a vector space over field R. Let X :=
{x(i) : i ∈ [k]}, where x(i) ∈ V . Let y =

∑k
i=1 αix

(i), where αi ∈ F .

• y is a called a linear combination of X.
• If αi ≥ 0 for all i ∈ [k], then y is a called a non-negative linear combination of X.
• If

∑k
i=1 αi = 1, then y is called an affine combination of X.

• A non-negative affine combination is called a convex combination.

Theorem 26 (Cauchy-Schwarz inequality). ∀x, y ∈ Rd, |xTy| ≤ ∥x∥∥y∥.
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