Nash Equilibrium

Eklavya Sharma

Definition 1. A strategy profile s^* for game $(N, (S_i)_{i \in N}, (u_i)_{i \in N})$ is called a pure strategy Nash equilibrium *(PSNE)* iff

$$\forall i \in N, u_i(s_i^*, s_{-i}^*) = \max_{a \in S_i} u_i(a, s_{-i}^*)$$

Equivalently, this means that for every player, unilateral deviations do not increase utility.

1 Examples

1.1 Coordination game

21	А	В
А	100, 100	0, 0
В	0, 0	10, 10

Here (A, A) and (B, B) are PSNE but (A, B) and (B, A) are not PSNE.

1.2 Prisoner's dilemma

21	С	В
С	-2, -2	-10, -1
В	-1, -10	-5, -5

Here (B, B) is the only PSNE.

2 Properties of PSNE

Theorem 1. A very weak DSE is also a PSNE.

Proof.

$$s^* \text{ is a very weak DSE} \iff \forall i \in N, \ \forall s_i \in S_i, \ \forall s_{-i} \in S_{-i}, \ u_i(s_i^*, s_{-i}) \ge u_i(s_i, s_{-i}) \implies \forall i \in N, \ \forall s_i \in S_i, \ u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*) \iff s^* \text{ is a PSNE}$$

Theorem 2. If a game contains a strong DSE, then that is the only PSNE.

Proof. Assume the game contains a strong DSE s^* and a PSNE t^* such that $s^* \neq t^*$. Since $s^* \neq t^*$, there exists a player *i* such that $s_i^* \neq t_i^*$.

 $s^* \text{ is a strong DSE} \implies s_i^* \text{ is a strongly dominant strategy for player } i \\ \iff \forall s_i \in S_i - \{s_i^*\}, \ \forall s_{-i} \in S_{-i}, \ u_i(s_i^*, s_{-i}) > u_i(s_i, s_{-i}) \\ \implies u_i(s_i^*, t_{-i}^*) > u_i(t_i^*, t_{-i}^*)$

 $t^* \text{ is a PSNE}$ $\implies \forall s_i \in S_i, \ u_i(t^*_i, t^*_{-i}) \ge u_i(s_i, t^*_{-i})$ $\implies u_i(t^*_i, t^*_{-i}) \ge u_i(s^*_i, t^*_{-i})$

This is a contradiction, so we cannot have a strong DSE and a different PSNE together in a game. $\hfill \Box$