
3 – Private Key Encryption

Eklavya Sharma

Contents

1 Computational Security 1

1.1 Definition of relaxations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 [Draft] Necessity of the relaxations . . . . . . . . . . . . . . . . . . . . . 2

2 Defining Computationally Secure Encryption 2

3 Pseudorandom Generators 3

4 Stronger notions of security 3

4.1 Multiple messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

5 Chosen-Plaintext Attack 4

6 Pseudorandom Functions 5

7 CTR mode of operation 6

1 Computational Security

1.1 Definition of relaxations

Unlike perfect security, we make 2 additional assumptions to make secure encryption
practical:

• Adversaries are efficient and only run for a feasible amount of time.

• Adversaries have a negligible probability of success.

All encryption schemes are parametrized by a security parameter n. n is usually the key
length. The terms ‘efficient’ and ‘negligible’ are defined in terms of n.

Definition 1. An efficient adversary is a probabilistic polynomial-time (PPT) algorithm,
where the input is at least as large as the security parameter.
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Definition 2. Denote the set of all negligible functions of n as negl(n), where

negl(n) =
⋂
k∈N

o(n−k)

Theorem 1.

f ∈ negl(n) ⇐⇒ ∀p(x) ∈ R[x], ∃N ∈ N,∀n ≥ N, f(n) <
1

p(n)

Theorem 2.

f ∈ negl(n) =⇒ (∀p(x) ∈ R[x], p(n)f(n) ∈ negl(n))

1.2 [Draft] Necessity of the relaxations

(TODO: Needs rigor)

• Powerful adversary can brute force the set of keys to break scheme with very high
probability.

• Normal adversary can guess key and break scheme with slightly higher probability
than pure guess.

2 Defining Computationally Secure Encryption

• The key-generation algorithm Gen takes input 1n and returns key k. We assume
(why?) that |k| ≥ n.

• The encryption algorithm Enc takes the key and message as input and outputs a
ciphertext.

• The decryption algorithm Dec takes the key and ciphertext as input and outputs a
message.

Definition 3. The adversarial indistinguishability experiment PrivKeav
A,Π(n):

1. A is given input 1n. It outputs 2 messages m0 and m1 with |m0| = |m1|.

2. k ∈ K is generated by running Gen(1n). b is chosen uniformly randomly from {0, 1}.
c = ek(m), called the challenge ciphertext, is computed and given to A.

3. A outputs a bit b′.

4. PrivKeav
A,Π(n) =

{
1 if b′ = b

0 if b′ ̸= b
.

Messages output by adversary are required to be of the same length otherwise adversary
can use ciphertext length to determine which message was encrypted.
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Definition 4. Scheme Π is EAV-secure iff for every PPT adversary A,

Pr
[
PrivKeav

A,Π(n) = 1
]
− 1

2
∈ negl(n)

Definition 5. Let PrivKeav
A,Π(n, b) be the experiment where the message chosen by the

challenger is fixed to be mb (instead of choosing uniformly randomly from {m0,m1}), but
the adversary doesn’t know this. Let PrivKOuteavA,Π(n, b) be the output b′ of the adversary.

Theorem 3. Π is secure iff for all PPT adversaries A,∣∣Pr [PrivKOuteavA,Π(n, 1) = 1
]
− Pr

[
PrivKOuteavA,Π(n, 0) = 1

]∣∣ ∈ negl(n)

3 Pseudorandom Generators

Definition 6. Let l(n) be a polynomially-bounded function. Let G : {0, 1}n 7→ {0, 1}l(n)
be a deterministic polynomial-time algorithm. G is a pseudorandom generator (aka PRG)
iff both these conditions hold:

• Expansion: ∀n > 1, l(n) > n.

• Pseudorandomness: For any PPT algorithm D,∣∣∣∣ Pr
s∈R{0,1}n

[D(G(s)) = 1]− Pr
r∈R{0,1}l(n)

[D(r) = 1]

∣∣∣∣ ∈ negl(n)

A pseudorandom generator G can be used to construct an encryption scheme ΠG:

• Gen: k ∈R K.

• ek(m) = m⊕G(k).

• dk(c) = c⊕G(k).

Theorem 4. G is a PRG =⇒ ΠG is EAV-secure.

4 Stronger notions of security

4.1 Multiple messages

The multiple-message eavesdropping experiment PrivKmult
A,Π (n):

1. The adversary A is given input 1n and outputs M0 = [m0,i]
t
i=1 and M1 = [m1,i]

t
i=1

where ∀i, |m0,i| = |m1,i|.

2. k = Gen(1n), b ∈R {0, 1}.

3. ∀i, ci = ek(mb,i). C = [ci]
n
i=1.
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4. A is given C and it outputs a bit b′.

5. PrivKmult
A,Π (n) =

{
1 if b′ = b

0 if b′ ̸= b
.

Definition 7. Π has indistinguishable multiple encryptions iff

Pr
[
PrivKmult

A,Π (n) = 1
]
− 1

2
∈ negl(n)

Theorem 5. Any stateless and deterministic encryption scheme has distinguishable mul-
tiple encryptions.

Proof. The adversary chooses message lists M0 = (m,m) and M1 = (m,m′). Then given
C = (c1, c2), it outputs b

′ = (c1 ̸= c2). The adversary succeeds with probability 1.

5 Chosen-Plaintext Attack

The chosen-plaintext attack experiment PrivKcpa
A,Π(n):

1. k = Gen(1n).

2. A is given input 1n and oracle access to ek and outputs (m0,m1) where |m0| = |m1|.

3. b ∈R {0, 1}. c = ek(mb) is given to A.

4. A, which continues to have oracle access to ek, outputs a bit b′.

5. PrivKcpa
A,Π(n) =

{
1 if b′ = b

0 if b′ ̸= b
.

Definition 8. Π is indistinguishable under chosen-plaintext attack iff

Pr
[
PrivKcpa

A,Π(n)
]
− 1

2
∈ negl(n)

Definition 9. The LR-oracle LRk,b is a function where LRk,b(m0,m1) = ek(mb).

The LR-oracle experiment PrivKlr-cpa
A,Π (n):

1. k = Gen(1n). b ∈R {0, 1}.

2. A is given input 1n and oracle access to LRk,b.

3. A outputs a bit b′.

4. PrivKlr-cpa
A,Π (n) =

{
1 if b′ = b

0 if b′ ̸= b
.

Definition 10. Π has indistinguishable multiple encryptions under chosen-plaintext at-
tack if

Pr
[
PrivKlr-cpa

A,Π (n)
]
− 1

2
∈ negl(n)

Theorem 6. Π is CPA-secure iff it is multi-CPA-secure.

Proof. (Proof will appear in a later chapter)
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6 Pseudorandom Functions

Definition 11. Let |M|, |K|, |C| ∈ poly(n). Let FuncM,C be the family of all functions
from M to C. Let F = {Fk : k ∈ K} ⊆ FuncM,C be a function family. F is pseudorandom
iff for every PPT distinguisher D,∣∣∣∣ Pr

k∈RK

[
DFk(1n) = 1

]
− Pr

f∈RFuncM,C

[
Df (1n) = 1

]∣∣∣∣ ∈ negl(n)

Example 1. Fk(x) = x⊕ k is not pseudorandom.

Definition 12. A function family F is efficient iff ∀f ∈ F , f can be computed in poly-
nomial time.

Definition 13. Let |M|, |K| ∈ poly(n). Let PermM be the family of all permutations of
M. Let F = {Fk : k ∈ K} ⊆ PermM be a permutation family. F is pseudorandom iff for
every PPT distinguisher D,∣∣∣∣ Pr

k∈RK

[
DFk(1n) = 1

]
− Pr

f∈RPermM

[
Df (1n) = 1

]∣∣∣∣ ∈ negl(n)

F is strongly pseudorandom iff for every PPT distinguisher D,∣∣∣∣ Pr
k∈RK

[
DFk,F

−1
k (1n) = 1

]
− Pr

f∈RPermM

[
Df,f−1

(1n) = 1
]∣∣∣∣ ∈ negl(n)

A pseudorandom permutation is also called a block cipher.

Definition 14. A permutation family F is efficient iff ∀f ∈ F , f and f−1 can be com-
puted in polynomial time.

Theorem 7. If F = {Fk : k ∈ K} ⊆ PermM is a pseudorandom permutation and
|M| ≥ |K|, then F is also a pseudorandom function.

Proof. (TODO: Add proof)

Theorem 8. Let F be a pseudorandom function. Let G(s) = concatli=1 Fs(i). Then G is
a pseudorandom generator.

Theorem 9. A pseudorandom generator with expansion l(n) can be used to construct a
pseudorandom function with input and output size O(log n).

Theorem 10. Let F be a pseudorandom function family. Let Π(n) be this scheme:

• Gen : k ∈R {0, 1}n.

• ek(m) = (r, Fk(r)⊕m), where r ∈R {0, 1}n.

• dk((r, c)) = Fk(r)⊕ c.

Then Π(n) is LR-CPA-secure.

5



7 CTR mode of operation

‘Mode of operation’ is a way of encrypting messages of variable lengths using a fixed-
length block cipher.

Specification of CTR mode of operation, which uses a pseudorandom function family F :

• Gen: k ∈R {0, 1}n.

• ek([mi]
l
i=1) = [IV]+[Fk(c+i)⊕mi]

l
i=1, where IV ∈R {0, 1}n is called the initialization

vector.

• dk([IV] + [mi]
l
i=1) = [Fk(c+ i)⊕ ci]

l
i=1

Theorem 11. The CTR mode of operation is LR-CPA-secure.
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