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1 Computational Security

1.1 Definition of relaxations

Unlike perfect security, we make 2 additional assumptions to make secure encryption
practical:

e Adversaries are efficient and only run for a feasible amount of time.

e Adversaries have a negligible probability of success.

All encryption schemes are parametrized by a security parameter n. n is usually the key
length. The terms ‘efficient” and ‘negligible’ are defined in terms of n.

Definition 1. An efficient adversary is a probabilistic polynomial-time (PPT) algorithm,
where the input is at least as large as the security parameter.
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Definition 2. Denote the set of all negligible functions of n as negl(n), where

negl(n) = () o(n™)

keN

Theorem 1.

f € negl(n) <= Vp(z) € R[z],3N € N,Vn > N, f(n) < ﬁ

Theorem 2.

f €negl(n) = (Vp(z) € Rlz],p(n)f(n) € negl(n))

1.2 [Draft] Necessity of the relaxations

(TODO: Needs rigor)
e Powerful adversary can brute force the set of keys to break scheme with very high
probability.

e Normal adversary can guess key and break scheme with slightly higher probability
than pure guess.

2 Defining Computationally Secure Encryption

e The key-generation algorithm Gen takes input 1™ and returns key k. We assume
(why?) that |k| > n.

e The encryption algorithm Enc takes the key and message as input and outputs a
ciphertext.

e The decryption algorithm Dec takes the key and ciphertext as input and outputs a
message.

eav

Definition 3. The adversarial indistinguishability experiment PrivK§T(n):

1. A is given input 1. It outputs 2 messages mqy and my with |mg| = |m4]|.

2. k € K is generated by running Gen(1™). b is chosen uniformly randomly from {0, 1}.
¢ = ex(m), called the challenge ciphertest, is computed and given to A.

3. A outputs a bit V.

1 iy =

4. PrivK{(n) = {0 i £

Messages output by adversary are required to be of the same length otherwise adversary
can use ciphertext length to determine which message was encrypted.
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Definition 4. Scheme 11 is EAV-secure iff for every PPT adversary A,

1
Pr [PrivK§{(n) = 1] — 5 € negl(n)

Definition 5. Let PrivK{{j(n,b) be the experiment where the message chosen by the

challenger is fized to be my, (instead of choosing uniformly randomly from {mgy, my}), but

the adversary doesn’t know this. Let PrivKOut{'[;(n,b) be the output b" of the adversary.
Theorem 3. II is secure iff for all PPT adversaries A,

|Pr [PrivKOut§};(n, 1) = 1] — Pr [PrivKOut 4 (n,0) = 1] { € negl(n)

3 Pseudorandom Generators

Definition 6. Let [(n) be a polynomially-bounded function. Let G : {0,1}" ~ {0, 1}/
be a deterministic polynomial-time algorithm. G is a pseudorandom generator (aka PRG)
iff both these conditions hold:

e FExpansion: ¥Yn > 1,1(n) > n.

e Pseudorandomness: For any PPT algorithm D,

Pr [D(G(s))=1]— Pr [D(r) =1]| € negl(n)

ser{0,1}n rer{0,1}m
A pseudorandom generator G can be used to construct an encryption scheme Ilg:
e Gen: kep K.
e ci.(m)=md G(k).
o dip(c) =cdG(k).
Theorem 4. G is a PRG = Ilg is EAV-secure.

4 Stronger notions of security

4.1 Multiple messages

The multiple-message eavesdropping experiment Priij}ﬁt(n):

1. The adversary A is given input 1" and outputs My = [mg,]'_; and My = [mq,]i_,
where Vi, |mg ;| = |m|.

2. k=Gen(1"), ber {0,1}.

3. Vi, ¢ = ep(myy). C = [e]ly.



4. Ais given C and it outputs a bit ¥'.

1 ifb =0

0 ifb #b

Definition 7. II has indistinguishable multiple encryptions iff

5. PrivK}'(n) = {

1
Pr [PrivK7{if(n) = 1] — 5 € negl(n)

Theorem 5. Any stateless and deterministic encryption scheme has distinguishable mul-
tiple encryptions.

Proof. The adversary chooses message lists My = (m, m) and M; = (m,m’). Then given
C = (c1,¢q), it outputs b’ = (¢; # ¢3). The adversary succeeds with probability 1. ]

5 Chosen-Plaintext Attack

The chosen-plaintext attack experiment PrivK('(n):
1. k= Gen(1™).
A is given input 1" and oracle access to e, and outputs (mg, m;) where |mg| = |my].

begr{0,1}. ¢ = ex(my) is given to A.

L

A, which continues to have oracle access to ey, outputs a bit b'.
1 ifv/=0b
0 ifb#b

Definition 8. II is indistinguishable under chosen-plaintext attack iff

5. PrivK{(n) = {

Pr [PrivK s (n)] — £ € negl(n)
Definition 9. The LR-oracle LRy, is a function where LRy (mo, m1) = ex(mp).
The LR-oracle experiment PriVKX%pa(n):
1. k= Gen(1™). b eg {0,1}.
2. Ais given input 1" and oracle access to LRy .
3. A outputs a bit ',

1 ifd=»b
4. PriVKZ:(f{)a(n) = l L
0 ifv#b

Definition 10. II has indistinguishable multiple encryptions under chosen-plaintext at-
tack if

1
Pr PHVKK?%nﬂ——§GIwQOﬂ
Theorem 6. II is CPA-secure iff it is multi-CPA-secure.

Proof. (Proof will appear in a later chapter) O
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6 Pseudorandom Functions

Definition 11. Let |[M|,|K|,|C| € poly(n). Let Funcpyc be the family of all functions
from M toC. Let F = {F}, : k € K} C Funcye be a function family. F is pseudorandom
iff for every PPT distinguisher D,

Pr [Df(1")=1]— Pr  [D/(1") =1]| € negl(n)

kerk fERFunCM,C
Example 1. Fj.(z) = x @ k is not pseudorandom.

Definition 12. A function family F' is efficient iff Vf € F, f can be computed in poly-
nomzial time.

Definition 13. Let |[M|, |K| € poly(n). Let Permy, be the family of all permutations of
M. Let F = {F} : k € K} C Permy, be a permutation family. F is pseudorandom iff for
every PPT distinguisher D,

Pr [D"(1")=1]- Pr [D/(1")=1]

€ negl(n
kerK fE€RPerm g( )

F is strongly pseudorandom iff for every PPT distinguisher D,

€ negl(n)

Pr [DFkak’l(W) - 1} ~ P [vaf*(w) - 1]

kerK fE€RrPerm

A pseudorandom permutation is also called a block cipher.

Definition 14. A permutation family F is efficient iff Vf € F, f and f~! can be com-
puted in polynomial time.

Theorem 7. If F = {F, : k € K} C Permy, is a pseudorandom permutation and
|IM| > |K|, then F is also a pseudorandom function.

Proof. (TODO: Add proof) O

Theorem 8. Let F be a pseudorandom function. Let G(s) = concat!_, Fy(i). Then G is
a pseudorandom generator.

Theorem 9. A pseudorandom generator with expansion l(n) can be used to construct a
pseudorandom function with input and output size O(logn).

Theorem 10. Let F' be a pseudorandom function family. Let TI(n) be this scheme:
e Gen:kepr{0,1}".
o cp(m) = (r, Fp(r) ® m), where r €g {0,1}".

e di((r,c)) = F(r) @ c.

Then II(n) is LR-CPA-secure.



7 CTR mode of operation

‘Mode of operation’ is a way of encrypting messages of variable lengths using a fixed-
length block cipher.

Specification of CTR mode of operation, which uses a pseudorandom function family F"

e Gen: k e€p {01}

o en([mi]s,) = [IV]+[Fi(c+i)dmy)l_,, where IV € {0, 1}" is called the initialization
vector.

o di([IV] + [miliny) = [Fi(c +14) & ciliy
Theorem 11. The CTR mode of operation is LR-CPA-secure.
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