2 – Perfectly Secret Encryption

Eklavya Sharma

Random number generation: Requires high-entropy data and a process for creating unbiased independent bits from it.

Contents

1 Formal definitions of security

There are multiple definitions of security.

Let $\Pi = (\mathcal{M}, \mathcal{K}, \mathcal{C}, \mathsf{Gen}, e, d)$ be the encryption scheme under consideration. We will consider ciphertext-only attack by an adversary with unbounded computational power. Let $M \in \mathcal{M}, K \in \mathcal{K}, C \in \mathcal{C}$ be the random variables corresponding to the message, key and ciphertext.

Definition 1. Π is secure iff

 $\forall m \in \mathcal{M}, \forall c \in \mathcal{C}, (P[C = c] > 0 \implies P[M = m | C = c] = P[M = m])$

Definition 2. Π is secure iff

 $\forall m \in \mathcal{M}, \forall m' \in \mathcal{M}, \forall c \in \mathcal{C}, P[C = c | M = m] = P[C = c | M = m']$

Definition 3 (Perfect indistinguishability). The adversarial indistinguishability experiment PrivK^{eav}_{A,Π}:

- The adversary A outputs a pair of messages $m_0, m_1 \in \mathcal{M}$.
- A key k is generated using Gen, and a uniform bit $b \in \{0,1\}$ is chosen. Ciphertext $c = e_k(m_b)$, called the challenge ciphertext, is computed and given to A.
- \bullet A outputs a bit b' .
- The output of the experiment is defined as

$$
PrivK_{A,\Pi}^{\text{eav}} = \begin{cases} 1 & \text{if } b' = b \\ 0 & \text{if } b' = b \end{cases}
$$

 Π is perfectly indistinguishable iff $P[PrivK_{A,\Pi}^{eav} = 1] = \frac{1}{2}$.

Theorem 1. All of the above definitions of security are equivalent.

2 One-time Pad

The one-time pad is the encryption scheme where:

- $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0, 1\}^l$.
- Gen chooses a key uniformly randomly from K .
- $e_k(x) = d_k(x) = x \oplus k$.

Theorem 2. The one-time pad is a perfectly secure encryption scheme.

3 Limitations of perfect security

Theorem 3. $(\mathcal{M}, \mathcal{K}, \mathcal{C}, \mathsf{Gen}, e, d)$ is perfectly secure $\implies |\mathcal{K}| \geq |\mathcal{M}|$.

Hint. Consider $\mathcal{M}(c) = \{d_k(c) : k \in \mathcal{K}\}\$. Show that $|\mathcal{M} - \mathcal{M}(c)| > 0$. \Box

4 Shannon's theorem

Theorem 4. Let $\Pi = (\mathcal{M}, \mathcal{K}, \mathcal{C}, \mathsf{Gen}, e, d)$ and $|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|$. Π is a perfectly secure encryption scheme iff both of the following are true:

- Gen chooses every key with equal probability $1/|\mathcal{K}|$.
- $\forall m \in \mathcal{M}, \forall c \in \mathcal{C}, |\{k : e_k(m) = c\}| = 1.$