Bounds on Sorting

Eklavya Sharma

Abstract

This document analyzes lower and upper bounds on the worst-case number of
comparisons required for sorting an array of n elements. This is done for both
sorting in general and for specific algorithms.

Contents
1 General lower bound

2 Specific algorithms
2.1 Imsertion sort
2.2 Insertion sort with binary search
2.3 Mergesort
2.4 Heapsort
2.5 Randomized quicksort

W N NN DNDDN

1 General lower bound

By the decision tree model of computing, we get a lower bound of [lg(n!)] on the number
of comparisons in the worst case.

By Stirling’s approximation, we get

1 1 1
) = — _ _—
lg(n!) =nlgn — (Ige)n + 5 lgn +1gVv2r + (Ige) [12” 1 12”]

(lge =~ 1.4427 and lg /27 ~ 1.3257)

2 Specific algorithms

2.1 Insertion sort

. . 1 .
In the worst case, insertion sort performs % comparisons.

2.2 Insertion sort with binary search

Binary searching an array of size n takes [lgn| + 1 comparisons. (Solve the recurrence
FO=1nfm)=f(5])+1)

Therefore, number of comparisons is

(0= 1)+ 3" Ui < (n— 1)+ Lla((n — 1))

2.3 Merge sort

Merging 2 sorted arrays of size m and n can be done in at most m +n — 1 comparisons.

In the worst case, merge sort performs f(n) comparisons, where f(0) = f(1) = 0 and
f) = (D +f([5]) + (= 1).

The solution to this recurrence is [2]
f(n)=n(llgn] 4+ 1) — 28"+ L 1 e n|lgn| — [0,n — 1]

This is O(n) higher than the decision-tree lower bound.

2.4 Heapsort

With a binary heap, total number of comparisons for heapsort
5
<2(n—14[lg((n—=1)1]) <2nlgn —2(lge —1)n —lgn +lgm — 6

See [1] for the algorithm and analysis.

2.5 Randomized quicksort

Partitioning an array of size n about a pivot can be done in n — 1 comparisons.

Let f(n) be the expected number of comparisons required for randomized quicksort.
Therefore, f(0) = f(1) =0 and

n

Fn) = (0= 1)+ S (G = 1)+ fln)

=1

f) = (0= 1)+ = (7= 1)+ fln)
= nf(n) :n(n—1)+2if(i—1)
=nfn)—(n—1)f(ln—1)=2(n—1)+2f(n—1)

(subtract equations for n and n — 1)

f(n) fln—1) 2mn-1) 4 2
:>n+1_ 0 T nn+1) n+l n

Using the integration bound for the sum of a decreasing function:

é;f(z‘) <(/ bf(:r)dx) 1), F ()

we get H(n) € Inn + [£,1].
Therefore,

f(n)=2((n+1)H(n) —2n) <2nlnn —2n+ 2H(n)
< <lgle> nlgn —2n+ 2H(n)

Since, lg% ~ 1.3863, randomized quicksort takes approximately 1.3863 times the number

of comparisons by the decision-tree lower bound.

References

[1] Eklavya Sharma. Notes: Heaps. URL: https://sharmaeklavya2.github.io/
notes/algorithms/heaps.pdf.

[2] Eklavya Sharma. Notes: Recurrence relations. URL: https://sharmaeklavya2.
github.io/notes/math/recurrences.pdf.

https://sharmaeklavya2.github.io/notes/algorithms/heaps.pdf
https://sharmaeklavya2.github.io/notes/algorithms/heaps.pdf
https://sharmaeklavya2.github.io/notes/math/recurrences.pdf
https://sharmaeklavya2.github.io/notes/math/recurrences.pdf

	1 General lower bound
	2 Specific algorithms
	2.1 Insertion sort
	2.2 Insertion sort with binary search
	2.3 Merge sort
	2.4 Heapsort
	2.5 Randomized quicksort

