
Bounds on Sorting

Eklavya Sharma

Abstract

This document analyzes lower and upper bounds on the worst-case number of
comparisons required for sorting an array of n elements. This is done for both
sorting in general and for specific algorithms.

Contents

1 General lower bound 2

2 Specific algorithms 2
2.1 Insertion sort . 2
2.2 Insertion sort with binary search . 2
2.3 Merge sort . 2
2.4 Heapsort . 2
2.5 Randomized quicksort . 3

1

1 General lower bound

By the decision tree model of computing, we get a lower bound of ⌈lg(n!)⌉ on the number
of comparisons in the worst case.

By Stirling’s approximation, we get

lg(n!) = n lg n− (lg e)n+
1

2
lg n+ lg

√
2π + (lg e)

[
1

12n+ 1
,

1

12n

]
(lg e ≈ 1.4427 and lg

√
2π ≈ 1.3257)

2 Specific algorithms

2.1 Insertion sort

In the worst case, insertion sort performs n(n−1)
2

comparisons.

2.2 Insertion sort with binary search

Binary searching an array of size n takes ⌊lg n⌋ + 1 comparisons. (Solve the recurrence
f(1) = 1 ∧ f(n) = f

(⌊
n
2

⌋)
+ 1)

Therefore, number of comparisons is

(n− 1) +
n−1∑
i=1

⌊lg i⌋ ≤ (n− 1) + ⌊lg((n− 1)!)⌋

2.3 Merge sort

Merging 2 sorted arrays of size m and n can be done in at most m+ n− 1 comparisons.

In the worst case, merge sort performs f(n) comparisons, where f(0) = f(1) = 0 and
f(n) = f

(⌊
n
2

⌋)
+ f

(⌈
n
2

⌉)
+ (n− 1).

The solution to this recurrence is [2]

f(n) = n(⌊lg n⌋+ 1)− 2⌊lgn⌋+1 + 1 ∈ n ⌊lg n⌋ − [0, n− 1]

This is O(n) higher than the decision-tree lower bound.

2.4 Heapsort

With a binary heap, total number of comparisons for heapsort

≤ 2(n− 1 + ⌊lg((n− 1)!)⌋) ≤ 2n lg n− 2(lg e− 1)n− lg n+ lg π − 5

6

See [1] for the algorithm and analysis.

2

2.5 Randomized quicksort

Partitioning an array of size n about a pivot can be done in n− 1 comparisons.

Let f(n) be the expected number of comparisons required for randomized quicksort.
Therefore, f(0) = f(1) = 0 and

f(n) = (n− 1) +
1

n

n∑
i=1

(f(i− 1) + f(n− i))

f(n) = (n− 1) +
1

n

n∑
i=1

(f(i− 1) + f(n− i))

⇒ nf(n) = n(n− 1) + 2
n−1∑
i=0

f(i− 1)

⇒ nf(n)− (n− 1)f(n− 1) = 2(n− 1) + 2f(n− 1)
(subtract equations for n and n− 1)

⇒ f(n)

n+ 1
− f(n− 1)

n
=

2(n− 1)

n(n+ 1)
=

4

n+ 1
− 2

n

⇒ f(n)

n+ 1
− f(0) =

n∑
i=1

(
4

i+ 1
− 2

i

)
= 2H(n+ 1) +

2

n+ 1
− 4 (H(n) =

∑n
i=1

1
i
)

⇒ f(n) = 2((n+ 1)H(n)− 2n)

Using the integration bound for the sum of a decreasing function:

b∑
i=a

f(i) ∈
(∫ b

a

f(x)dx

)
+ [f(b), f(a)]

we get H(n) ∈ lnn+
[
1
n
, 1
]
.

Therefore,

f(n) = 2((n+ 1)H(n)− 2n) ≤ 2n lnn− 2n+ 2H(n)

≤
(

2

lg e

)
n lg n− 2n+ 2H(n)

Since, 2
lg e

≈ 1.3863, randomized quicksort takes approximately 1.3863 times the number
of comparisons by the decision-tree lower bound.

References

[1] Eklavya Sharma. Notes: Heaps. URL: https://sharmaeklavya2.github.io/

notes/algorithms/heaps.pdf.

[2] Eklavya Sharma. Notes: Recurrence relations. URL: https://sharmaeklavya2.
github.io/notes/math/recurrences.pdf.

3

https://sharmaeklavya2.github.io/notes/algorithms/heaps.pdf
https://sharmaeklavya2.github.io/notes/algorithms/heaps.pdf
https://sharmaeklavya2.github.io/notes/math/recurrences.pdf
https://sharmaeklavya2.github.io/notes/math/recurrences.pdf

	1 General lower bound
	2 Specific algorithms
	2.1 Insertion sort
	2.2 Insertion sort with binary search
	2.3 Merge sort
	2.4 Heapsort
	2.5 Randomized quicksort

