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Let [n] = {1, 2, . . . , n}. In the set cover problem, we are given m sets: Si ⊆ [n]. I is a
feasible solution to the set cover problem iff

⋃
j∈I Sj = [n]. We are also given m positive

weights w ∈ Rm. I is an optimal solution solution iff I is a feasible solution and
∑

i∈I wi

is minimum.
This article looks at this problem in a way similar to the book ‘The Design of Approxi-

mation Algorithms’ by Williamson and Shmoys, but with different terminology/notation.
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1 Mathematical Preliminaries

1.1 Element-wise relational operators on vectors

Definition 1. For a vector z ∈ {0, 1}n, all(x) ⇐⇒ (∀i ∈ [n], xi = 1).

Definition 2. Let x, y ∈ Rn. Then x < y ∈ {0, 1}n, where (x < y)i = xi < yi. Other
relational operators (>,≤,≥,==, ̸=) are defined analogously.

Definition 3. Let α ∈ R and x ∈ Rn. Then x < α ∈ {0, 1}n, where (x < α)i = xi < α.
Other relational operators (>,≤,≥,==, ̸=) are defined analogously.

Theorem 1 (Exercise). Let x ∈ Rn and α ∈ R.

(all(x ≥ 0) ∧ (p = (x ≥ α))) =⇒ all(x ≥ αp)

Theorem 2 (Exercise).

xT (x == y) = yT (x == y)
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Theorem 3 (Exercise).

(all(x ≥ 0) ∧ all(a ≤ b)) =⇒ aTx ≤ bTx

Corollary 3.1 (Exercise).

(all(A ≥ 0) ∧ all(x ≤ y)) =⇒ Ax ≤ Ay

1.2 Linear Programming

An optimization problem is a 4-tuple (direction, variable, objective, constraint) where
direction is either min or max.

A linear program is an optimization problem of one of these forms:

• (min, x, cTx, all(x ≥ 0) ∧ all(Ax ≥ b))

• (max, x, cTx, all(x ≥ 0) ∧ all(Ax ≤ b))

Here x, b, c are vectors and A is a matrix. If entries of x are restricted to be integers,
then the program is an integer linear program.

argopt(LP) is the value of the variable which optimizes the objective of the linear program
LP. opt(LP) is the optimal objective value of the linear program LP.

Definition 4. These 2 programs are duals of each other:

• (min, x, cTx, all(x ≥ 0) ∧ all(Ax ≥ b))

• (max, x, bTy, all(y ≥ 0) ∧ all(ATy ≤ c))

Theorem 4 (Weak duality). If x is a feasible solution to (min, x, cTx, all(x ≥ 0) ∧
all(Ax ≥ b)) and y is a feasible solution to its dual, then bTy ≤ yTAx ≤ cTx.

Proof. (Using theorem 3)

bTy = yT b ≤ yT (Ax) = (ATy)Tx ≤ cTx

Theorem 5 (Strong duality). If LP is the linear program (min, x, cTx, all(x ≥ 0) ∧
all(Ax ≥ b)) and DLP is its dual, then opt(LP) = opt(DLP).

Proof. Look it up in a textbook. It’s too long to write here.
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2 Formulation as ILP

Denote a solution I by the vector z ∈ {0, 1}m, where zj =

{
1 j ∈ I

0 j ̸∈ I
.

Let A be an n by m matrix where A[i, j] = i ∈ Sj.

Number of sets in I which cover i

= |{j : i ∈ Sj ∧ j ∈ I}| = |{j : A[i, j]zj = 1}| =
m∑
j=1

A[i, j]zj = (Az)i

Therefore, z is a feasible solution iff all(Az ≥ 1).

The set cover problem is described by the ILP (min, z, wT z, all(z > 0)∧all(Az ≥ 1)). We
don’t need to specify the constraint z ≥ 1 because the optimal solution cannot have an
integer entry greater than 1. This is because if an entry is greater than 1, reducing it to
1 will continue to respect constraints and will decrease the objective.

Denote by ILP the integer programming problem above. Let RLP be the relaxed version
of the ILP (i.e. with the integral constraint removed). Let DLP be the dual of RLP.

(1TA)j =
n∑

i=1

A[i, j] = |Sj|

Let Ti = {j : i ∈ Sj}, so Ti are the indices of the sets which i belongs to. Therefore,
A[i, j] = 1 ⇐⇒ j ∈ Ti. Let deg(i) = |Ti|. Let f = maxi∈[n] deg(i).

(1TAT )i =
m∑
j=1

A[i, j] = deg(i)

3 Approximation algorithms

3.1 Algorithm 1

Let z∗ = argopt(ILP). Let x∗ = argopt(RLP).

Since ILP is more constrained, wTx∗ ≤ wT z∗.

Let s = (x ≥ 1
f
).

Theorem 6. s is a feasible solution to ILP.
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Proof.

all(Ax∗ ≥ 1)

⇒ (Ax∗)i =
m∑
j=1

A[i, j]x∗
j =

∑
j∈Ti

x∗
j ≥ 1

⇒ ∃j ∈ Ti, x
∗
j ≥

1

|Ti|
≥ 1

f

⇒ ∃j ∈ Ti, sj = 1

⇒ ∃j ∈ Ti, sj = 1

⇒
∑
j∈Ti

sj ≥ 1

⇒
m∑
j=1

A[i, j]sj ≥ 1

⇒ (As)i ≥ 1

⇒ all(As ≥ 1)

Since s satisfies the ILP constraints, it is a feasible solution to ILP.

Since s is a feasible solution to ILP but not necessarily optimal, wT z∗ ≤ wT s.

Theorem 7. s is an f -approximate solution to ILP.

Proof. By theorem 1, we get all(s ≤ fx∗). By theorem 3, we get wT s ≤ fwTx∗ ≤
fwT z∗.

3.2 Algorithm 2

DLP = (max, y, 1Ty, all(y ≥ 0) ∧ all(ATy ≤ w)).

Let y∗ = argopt(DLP). Let t = (ATy == w).

Theorem 8. t is a feasible solution to ILP.

Proof. To be done

Theorem 9. t is an f -approximate solution to ILP.
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Proof.

wT t

= (ATy∗ == w)Tw

= (ATy∗ == w)T (ATy∗) (theorem 2)

= tT (ATy∗)

≤ 1T (ATy∗) (theorem 3)

= (1TAT )y∗

= [deg(i)]ni=1y
∗

≤ f1Ty∗

= f opt(DLP )

≤ f opt(RLP ) (strong duality)

≤ f opt(ILP )
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