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Abstract

This document analyzes lower and upper bounds on the worst-case number of
comparisons required for selection, i.e. finding the kth-smallest element in an array
of n elements.
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1 General lower bound

There must be at least n− 1 comparisons [proof needed].

2 Specific algorithms

2.1 Sort and select

First sort the array, then return the kth element.

Sorting has a lower bound of ⌈lg(n!)⌉ comparisons. It can be upper bounded by consid-
ering specific sorting algorithms. All efficient algorithms use Θ(n lg n) comparisons.

2.2 Build heap and pop

Build a min-heap of all elements and pop k times.

A binary min-heap of size n can be built using at most 2(n−1) comparisons and an item
can be popped from it using at most 2 ⌊lg(n− 1)⌋ comparisons [1].

Therefore, number of comparisons to select the kth-smallest element is upper bounded by

2

(
n− 1 +

k∑
i=1

⌊lg(n− i)⌋

)
≤ 2(n− 1 + k ⌊lg(n− 1)⌋)

2.3 Maintain heap and pop

Build a max-heap of first k elements. For each of the rest of the elements, compare it
with the heap top. Replace top by new element and repair heap. The heap top at the
end of this process is the kth-smallest element.

A binary max-heap of size k can be built using at most 2(k − 1) comparisons and top
can be replaced using at most 2 ⌊lg k⌋ comparisons [1].

Therefore, number of comparisons to select the kth-smallest element is upper bounded by

2((n− k) ⌊lg k⌋+ (k − 1))

Although this is not as efficient as the previous algorithm, it has the advantage of being
an online streaming algorithm.

2.4 Randomized quick-select

This algorithms partitions the array using a random pivot and then recursively selects
from one of the partitions.

Let f(n) be the expected number of comparisons required to select from n elements.
f(0) = f(1) = 0.
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Partitioning the array can be done using n− 1 comparisons.

f(n) ≤ (n− 1) +
1

n

n∑
i=1

max(f(i− 1), f(n− i))

≤ (n− 1) +
2

n

n−1∑
i=⌊n

2 ⌋
T (i)

We will prove using mathematical induction that f(n) ≤ 4n. Since f(0) = 0, d ≥ 0.

As the induction hypothesis, assume f(i) for all 0 ≤ i ≤ n− 1.

f(n) ≤ (n− 1) +
2

n

n−1∑
i=⌊n

2 ⌋
T (i)

≤ (n− 1) +
2

n

n−1∑
i=⌊n

2 ⌋
4i

= (n− 1) +
4

n

(
n(n− 1)−

⌊n
2

⌋(⌊n
2

⌋
− 1
))

≤ (n− 1) +
4

n

(
n(n− 1)− n

2

(n
2
− 1
))

= 4n− 3 ≤ 4n

Therefore, randomized quick-select performs at most 4n expected comparisons in the
worst case.

2.5 Median-of-medians quick-select

Median-of-medians quick-select (MoMQS) is a deterministic variant of quick-select which
uses quick-select recursively to decide a good pivot for partitioning. This guarantees
worst-case linear time complexity.

Let f(n) be the worst-case number of comparisons needed to run MoMQS on n elements.
f(0) = f(1) = 0.

Steps in MoMQS:

1. Split array into sub-arrays of length 5 or less such that at most 1 sub-array has
length less than 5.

2. Find median of each of those subarrays of length 5. It takes at most 6 comparisons
[2] to find each median.

3. Find the median of these
⌈
n
5

⌉
medians. This takes f(

⌈
n
5

⌉
) comparisons.

4. Partition the array about the median of medians. This takes n− 1 comparisons.
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5. Recurse into the appropriate partition. It can be proven that the larger part of the
array has size at most around 7n

10
. Therefore at most 7n

10
comparisons are required.

Therefore, a rough recurrence relation for f is:

f(n) ≈ 6n

5
+ f

(n
5

)
+ (n− 1) + f

(
7n

10

)

It can be verified that f(n) ≤ 22n.
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