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1 Almost-complete trees

1.1 Definition

A d-ary almost-complete tree is a rooted tree such that:

• Every vertex has at most d children.

• The tree is completely filled on all levels, except possibly the lowest, which is filled
from the left up to a point.

Unless d is explicitly specific, it is taken to be 2 (binary tree).

The size of an almost-complete tree is the number of vertices in it.

1.2 Indexing

Every vertex in an almost-complete tree of size n can be indexed by a unique integer
from 0 to n− 1 by using a left-to-right level-ordered indexing.

Index 0 is the root. The vertex at index i has its parent at index
⌊
i−1
d

⌋
=
⌈
i
d

⌉
− 1. This

means that the vertex at i has di+ j as a child for all 1 ≤ j ≤ d, except if di+ j ≥ n, in
which case i does not have a jth child.

1.3 Height

Let there be a d-ary almost-complete tree of size n and height h. Let x be the number
of nodes in the last level. Therefore, 1 ≤ x ≤ dh.

n = 1 + d+ d2 + . . .+ dh−1 + x =
dh − 1

d− 1
+ x

Theorem 1. h = ⌊logd(n(d− 1))⌋

2 Heaps

2.1 Definition

Let T be a rooted tree where every vertex has a value associated with it. A vertex v ∈ T
is said to follow the max-heap property iff its value is greater than or equal to the value
of all its children.

A max-heap is a rooted tree where every vertex follows the max-heap property.

Similarly, in a min-heap, the value of a vertex is always less than or equal to the value of
all of its children.

Heaps typically use almost-complete trees. This makes it possible to specify the vertex
values as an array A such that A[i] is the value of the vertex with index i.

2



2.2 Max-heapify

The procedure max heapify(A, i, n) takes as input an array A of size n representing a
d-ary almost-complete tree and an integer 0 ≤ i < n where the subtrees rooted at children
of vertex i are max-heaps. max heapify makes changes to A to make the subtree rooted
at i a max-heap.

If i is a leaf node, max heapify does nothing. Otherwise it finds out the largest child of
i. Let it be j. If the value of j is greater than the value of i, it swaps the values of i and
j and then calls max heapify(A, j, n).

The time taken by max heapify is proportional to the number of comparisons performed.

Theorem 2. max heapify performs at most dh(A, i, n) comparisons, where h(A, i, n) is
the height of vertex i (i.e. the length of the longest path from i to a leaf).

2.3 Building a max heap

The procedure build max heap(A, i, n) takes an array A of size n and modifies it so that
the subtree rooted at i is a heap. It does this by calling build max heap(A, j, n) for every
child j and then calling max heapify(A, i, n).

Therefore, time taken by build max heap is proportional to the number of comparisons
and the number of comparisons is upper bounded by dH, where H is the sum of heights
of all vertices.

Let the heap have size n, height h and x nodes in the last layer.

There are h+1 layers in the heap. If the last layer is removed, there would be di vertices
at depth i and they would all have height h − 1 − i. Adding back the last layer will
increase by 1 the height of all ancestors of the vertices in the last layer. Therefore,

H =

(
h−1∑
i=0

(h− 1− i)di

)
︸ ︷︷ ︸

H1

+

(
h∑

i=1

⌈ x
2i

⌉)
︸ ︷︷ ︸

H2

(d− 1)H1 =
dh − 1

d− 1
− h = n− x− h

H2 =
h∑

i=1

⌈ x
di

⌉
≥

h∑
i=1

x

di
=

x(1− d−h)

d− 1
≥ x− 1

d− 1

H2 =
h∑

i=1

⌈ x
di

⌉
=

h∑
i=1

(
1 +

⌊
x− 1

di

⌋)

≤ h+
h∑

i=1

x− 1

di
= h+

(x− 1)(1− d−h)

d− 1
≤ h+

x− 1

d− 1

H ∈ (n− 1) + h[−1, d− 2]

d− 1
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Therefore, number of comparisons to build d-ary max-heap

≤ dH ≤
(
1 +

1

d− 1

)
(n− 1) +

(
d− 1− 1

d− 1

)⌊
lg n+ lg(d− 1)

lg d

⌋

Number of comparisons to build a binary max-heap ≤ 2(n− 1).

2.4 Heapsort

Algorithm 1 heapsort(A, n)

build max heap(A, 0, n).
for i from n to 2 do

Swap A[0] and A[i− 1].
max heapify(A, 0, i− 1).

end for

Number of comparisons

≤ dH +
n−1∑
i=1

d ⌊logd(i(d− 1))⌋ ≤ dH +
d

lg d
(lg((n− 1)!) + (n− 1) lg(d− 1))

For large n, this is minimized at d = 3.

With a binary heap, total number of comparisons for heapsort

≤ 2(n− 1 + ⌊lg((n− 1)!)⌋) ≤ 2n lg n− 2(lg e− 1)n− lg n+ lg π − 5
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2.5 Push

To push a value into a max-heap array A, append it to the end of the array and then
keep swapping with parent while it’s greater than parent.

Time taken is proportional to number of comparisons. Number of comparisons is upper
bounded by height of new tree = ⌊lgd((n+ 1)(d− 1))⌋.

2.6 Pop

To pop a value from a max-heap of size n, swapA[0] andA[n−1] and call max heapify(A, 0, n−
1).

Time taken is proportional to number of comparisons. Number of comparisons is upper
bounded by d ⌊lgd((n− 1)(d− 1))⌋.

4


	1 Almost-complete trees
	1.1 Definition
	1.2 Indexing
	1.3 Height

	2 Heaps
	2.1 Definition
	2.2 Max-heapify
	2.3 Building a max heap
	2.4 Heapsort
	2.5 Push
	2.6 Pop


