Disjoint-set Union

Eklavya Sharma

Contents
1 Problem

2 Forest algorithm
2.1 Performance with no optimizations
2.2 rank upper-bounds height
2.3 Performance when union_ by is not None
2.4 Lower bound on time when compress_path is False
2.5 Both union-by-rank and path-compression
2.5.1 Alt-Ackermann function
2.5.2 level anditer
2.5.3 Potential function L.

[\

N O OOt O W W

All (pseudo-)code in this document is based on the python programming language.

1 Problem

In the Disjoint-set Union (DSU) problem, we are given a set S of n singleton sets, i.e.
S={{i}:0<i<n}
We have to perform m operations on S. Each operation can modify S while maintaining

these 2 invariants:

1. All elements of S are sets.

2. Every integer from 0 to n-1 lies in exactly one set in S.

Also, for every set X € 9, one of the elements of X will be known as the ‘representative
of X', denoted as repr(X).

Types of operations allowed

1. find(x): If 2 € X, return repr(X).

2. union(x, y): Let z € X and y € Y. Then remove X and Y from S and add XUY
to S.

union(x, y) is the only operation which can modify S. It is easy to see that union(x,
y) maintains the 2 invariants.

2 Forest algorithm

The ‘forest algorithm’ for DSU maintains a forest F' = (V, E) of rooted trees where
V={ie€Z:0<i<n}. Each treein F corresponds to a set in S. The representative
of a set is the root of the corresponding tree.

The forest is stored by keeping track of the parent of each vertex in an array parent of
size n. If a vertex = has no parent, then parent[x] = x. The algorithm (optionally)
maintains 2 additional arrays rank and size. rank[i] is an upper-bound on the height
of vertex ¢ and size[i] is the size of the subtree rooted at vertex i. Initially parent [i]
= i, rank[i] = 0 and size[i] = 1 forall 0 <i < n.

This algorithm offers 2 hyperparameters. These are optional optimizations for speeding
up DSU.

1. union_by: can be None, rank or size.

2. compress_path: can be False or True.

This is how find and union are implemented:

10

11

12

13

14

15

16

17

18

19

20

21

22

1

4

def find(x):

if parent[x] ==
return x

else:
r = find(parent [x])
if compress_path:

parent[x] = r

return r

def link(x, y):
parent[y] = x
size[x] += sizely]
rank[x] = max(rank[x], rank[y] + 1)

def union(x, y):
x = find(x)
y = find(y)
if union_by is not None and union_by[x] < union_byl[y]:
X, Y=Y, X

link(x, y)
return x =y

2.1 Performance with no optimizations

Consider the following operations:

for i in range(l, n):
union(i, i-1)

for i in range(1, m - n):
find (0)

When union_ by is None, union(x, y) makes the tree of y a subtree of z. Therefore, after
all the union operations, the forest will be a single chain from 0 to n—1. If compress_path
is False, each £ind(0) operation will take ©(n) time. Each union operation takes ©(1)
time. Therefore, total time taken is O((m — n)n).

2.2 rank upper-bounds height

For a tree T, let h(T) denote its height, n(7T") denote the number of nodes in it and
r(T) = rank(repr(7)).

Theorem 1. h(T) < r(T) throughout the algorithm.

Proof. Initially, h(T') = r(T") = 0 for every tree T

In a find operation, the height of a tree can only reduce (it can reduce if compress_path
is True, otherwise it doesn’t change).

Suppose link(x, y) is called and z € X and y € Y. Then Y is made a subtree of X.
Let the resulting tree be Z. Suppose h(X) < r(X) and h(Y) < r(Y).

h(Z) = max(h(X), h(Y) + 1) < max(r(X),r(Y) + 1) = r(Z)

Since h(T) < r(T') is initially true and remains true across find and union operations,
h(T) < r(T) is true for all trees across the entire DSU algorithm. O

2.3 Performance when union by is not None
Theorem 2. union by # None = V1, 7(T") <lgn(T).

Proof. Initially, VI',r(T) =0 =1g1 = 1gn(T).
find operations affect neither r nor n.

Suppose link(x, y) is called and x € X and y € Y. Then Y is made a subtree
of X. Let the resulting tree be Z. Suppose r(X) < lgn(X) and r(Y) < lgn(Y).
r(Z) = max(r(X),1+r(Y)) and n(Z) = n(X) + n(Y).

Case 1: union by = size
union by = size = n(Y) < n(X).
r(Z) = max(r(X),r(Y) + 1)
< max(lgn(X),lgn(Y)+ 1)
< max(lgn(X),1g(2n(Y)))
< lgmax(n(X), 2n(Y))
n(X) <n(X)+n(Y) and n(Y) < n(X) = 2n(Y) < n(X) +n(Y).
= r(Z) <lgmax(n(X), 2n(Y)) <lg(n(X) +n(Y)) = lgn(2)

Case 2: union_ by = rank
union by = rank = r(Y) <r(X).

Case 2a: r(Y) < r(X)

r(Z) = max(r(X),1 +r(Y)) = h(X)

<lgn(X) < lgn(X) +n(Y) < lgn(Z)
Case 2b: (V) = r(X)
r(Z) =max(r(X),1+rY))=1+rY)=1+r(X)
Z) < 1+lgn(Y) Ar(Z) <14Ign(X)

lgn(X))

lg(2min(n(X),n(Y))
lg(n(X) +n(Y)) = lgn(2)

~—

S
<

For both cases 1 and 2, r(Z) < lgn(Z). Therefore, union preserves the invariant
VT, r(T) <lgn(T). O

This means that any tree can have height at most lgn. Therefore, find and union have
a worst-case time complexity of O(lgn) and link has a worst-case time complexity of

0(1).

2.4 Lower bound on time when compress path is False

When there is no path compression, we can lower bound the worst-case time complexity
of find.

Consider these union operations:

for i in range(int(log2(n))):
for j in range(0, n, 1 << (i+1)):
union(j, j + (1 << 1))

The body of the outer loop is called a round. There are |lgn]| rounds.

Number of union operations:

[lgn] llgn

]
n 1 n
>[5 ey gen0-2m<nn

i=1

Theorem 3. After i rounds, there are _QEJ trees with height i and size 2°.

Proof by induction. Initially there are n trees of height 0 and size 1, so this is true for
1=0.

Assume the theorem is true for some 4 (induction hypothesis). Just before the (i + 1)

round, there are bﬂj trees of height 7 and size 2°. We can pair them up (if there are odd

number of trees, leave the last one unpaired). When we union them, we get L#J trees
with height i + 1 and size 2™ (this doesn’t depend on the value of union by).

Therefore, the theorem is true by mathematical induction. O

Theorem 4.

n
b@szl

Therefore, after |lgn| rounds, there is one tree of height |lgn]|. Therefore, worst-case
time complexity of find is Q(Ilgn).

2.5 Both union-by-rank and path-compression

2.5.1 Alt-Ackermann function

Definition 1. For j >0 and k > 0,

i+ k=0
Ar(4) = {7 G4y,
* {Az(f+11)(1) k>1

Here AL (j) = j and AP (5) = Ax(A{V (7).

Theorem 5. A;(0) =1
Theorem 6. A;(j

Theorem 7. As(j
Theorem 8. A3(1) = 2047
Theorem 9. A.(j

18 a non-decreasing function of k and j.

Theorem 10. A4(1) is way too large.

Proof.

Ay(1)
= A3(A;3(1))

= A3(2047)

= AP (2047)

> AP (2047)

= A5(A2(2047))

= Ay(2%°% x 2048 — 1)
— o(22%°-1) (22059) 1

= 222059

> 16167

Definition 2. a(n) = min({k : Ax(1) > n})

Theorem 11. p < a(n) < ¢ <= A,(1) <n < A4,(1)

2.5.2 level and iter

Let ' be a DSU forest with n nodes. For a node x, let x.p be its parent and x.rank be
its rank.

Theorem 12. z # z.p = z.rank < x.p.rank

Theorem 13. z.rank < [lgn] <n —1
We can partition the set of nodes into 3 parts:

e root nodes: {z:x = z.p}.
e leaf nodes: {x : xz.rank = 0}.

e internal nodes: non-root and non-leaf nodes.
level and iter are functions which map an internal node x to an integer.

6

Definition 3. level(z) = max({k : Ax(x.rank) < x.p.rank})
Theorem 14. k <level(z) <= Ai(x.rank) < xz.p.rank
Theorem 15. 0 < level(z) < a(|lgn] +1) < a(n)

Definition 4. iter(x) = max({i : Al(?vel(x)(x.mnk) < xz.p.rank})

(4)

level(x)

Theorem 16. i < iter(zr) <— A (x.rank) < x.p.rank})

Theorem 17. 1 < iter(x) < z.rank

2.5.3 Potential function
Definition 5. For a node z, the potential function ¢(x) is given by

a(n) - x.rank x s a root or leaf node
o(x) ={ "

(a(n) — level(z)) - z.rank — iter(z) otherwise
Theorem 18. x is an internal node — 0 < ¢(x) < a(n) - x.rank.

To be continued . ..

	1 Problem
	2 Forest algorithm
	2.1 Performance with no optimizations
	2.2 rank upper-bounds height
	2.3 Performance when union_by is not None
	2.4 Lower bound on time when compress_path is False
	2.5 Both union-by-rank and path-compression
	2.5.1 Alt-Ackermann function
	2.5.2 level and iter
	2.5.3 Potential function

