
Disjoint-set Union

Eklavya Sharma

Contents

1 Problem 2

2 Forest algorithm 2
2.1 Performance with no optimizations . 3
2.2 rank upper-bounds height . 3
2.3 Performance when union by is not None 4
2.4 Lower bound on time when compress path is False 5
2.5 Both union-by-rank and path-compression 5

2.5.1 Alt-Ackermann function . 5
2.5.2 level and iter . 6
2.5.3 Potential function . 7

1

All (pseudo-)code in this document is based on the python programming language.

1 Problem

In the Disjoint-set Union (DSU) problem, we are given a set S of n singleton sets, i.e.
S = {{i} : 0 ≤ i < n}.
We have to perform m operations on S. Each operation can modify S while maintaining
these 2 invariants:

1. All elements of S are sets.

2. Every integer from 0 to n-1 lies in exactly one set in S.

Also, for every set X ∈ S, one of the elements of X will be known as the ‘representative
of X’, denoted as repr(X).

Types of operations allowed

1. find(x): If x ∈ X, return repr(X).

2. union(x, y): Let x ∈ X and y ∈ Y . Then remove X and Y from S and add X∪Y
to S.

union(x, y) is the only operation which can modify S. It is easy to see that union(x,
y) maintains the 2 invariants.

2 Forest algorithm

The ‘forest algorithm’ for DSU maintains a forest F = (V,E) of rooted trees where
V = {i ∈ Z : 0 ≤ i < n}. Each tree in F corresponds to a set in S. The representative
of a set is the root of the corresponding tree.

The forest is stored by keeping track of the parent of each vertex in an array parent of
size n. If a vertex x has no parent, then parent[x] = x. The algorithm (optionally)
maintains 2 additional arrays rank and size. rank[i] is an upper-bound on the height
of vertex i and size[i] is the size of the subtree rooted at vertex i. Initially parent[i]

= i, rank[i] = 0 and size[i] = 1 for all 0 ≤ i < n.

This algorithm offers 2 hyperparameters. These are optional optimizations for speeding
up DSU.

1. union by: can be None, rank or size.

2. compress path: can be False or True.

This is how find and union are implemented:

2

1 def find(x):

2 if parent[x] == x:

3 return x

4 else:

5 r = find(parent[x])

6 if compress_path:

7 parent[x] = r

8 return r

9

10 def link(x, y):

11 parent[y] = x

12 size[x] += size[y]

13 rank[x] = max(rank[x], rank[y] + 1)

14

15 def union(x, y):

16 x = find(x)

17 y = find(y)

18 if union_by is not None and union_by[x] < union_by[y]:

19 x, y = y, x

20

21 link(x, y)

22 return x != y

2.1 Performance with no optimizations

Consider the following operations:

1 for i in range(1, n):

2 union(i, i-1)

3 for i in range(1, m - n):

4 find(0)

When union by is None, union(x, y) makes the tree of y a subtree of x. Therefore, after
all the union operations, the forest will be a single chain from 0 to n−1. If compress path

is False, each find(0) operation will take Θ(n) time. Each union operation takes Θ(1)
time. Therefore, total time taken is Θ((m− n)n).

2.2 rank upper-bounds height

For a tree T , let h(T) denote its height, n(T) denote the number of nodes in it and
r(T) = rank(repr(T)).

Theorem 1. h(T) ≤ r(T) throughout the algorithm.

Proof. Initially, h(T) = r(T) = 0 for every tree T .

In a find operation, the height of a tree can only reduce (it can reduce if compress path

is True, otherwise it doesn’t change).

3

Suppose link(x, y) is called and x ∈ X and y ∈ Y . Then Y is made a subtree of X.
Let the resulting tree be Z. Suppose h(X) ≤ r(X) and h(Y) ≤ r(Y).

h(Z) = max(h(X), h(Y) + 1) ≤ max(r(X), r(Y) + 1) = r(Z)

Since h(T) ≤ r(T) is initially true and remains true across find and union operations,
h(T) ≤ r(T) is true for all trees across the entire DSU algorithm.

2.3 Performance when union by is not None

Theorem 2. union by ̸= None =⇒ ∀T, r(T) ≤ lg n(T).

Proof. Initially, ∀T, r(T) = 0 = lg 1 = lg n(T).

find operations affect neither r nor n.

Suppose link(x, y) is called and x ∈ X and y ∈ Y . Then Y is made a subtree
of X. Let the resulting tree be Z. Suppose r(X) ≤ lg n(X) and r(Y) ≤ lg n(Y).
r(Z) = max(r(X), 1 + r(Y)) and n(Z) = n(X) + n(Y).

Case 1: union by = size

union by = size =⇒ n(Y) ≤ n(X).

r(Z) = max(r(X), r(Y) + 1)

≤ max(lg n(X), lg n(Y) + 1)

≤ max(lg n(X), lg(2n(Y)))

≤ lg max(n(X), 2n(Y))

n(X) ≤ n(X) + n(Y) and n(Y) ≤ n(X) ⇒ 2n(Y) ≤ n(X) + n(Y).

=⇒ r(Z) ≤ lg max(n(X), 2n(Y)) ≤ lg(n(X) + n(Y)) = lg n(Z)

Case 2: union by = rank

union by = rank =⇒ r(Y) ≤ r(X).

Case 2a: r(Y) < r(X)

r(Z) = max(r(X), 1 + r(Y)) = h(X)

≤ lg n(X) ≤ lg n(X) + n(Y) ≤ lg n(Z)

Case 2b: r(Y) = r(X)

r(Z) = max(r(X), 1 + r(Y)) = 1 + r(Y) = 1 + r(X)

⇒ r(Z) ≤ 1 + lg n(Y) ∧ r(Z) ≤ 1 + lg n(X)

⇒ r(Z) ≤ 1 + min(lg n(Y), lg n(X))

⇒ r(Z) ≤ lg(2min(n(X), n(Y)))

⇒ r(Z) ≤ lg(n(X) + n(Y)) = lg n(Z)

For both cases 1 and 2, r(Z) ≤ lg n(Z). Therefore, union preserves the invariant
∀T, r(T) ≤ lg n(T).

4

This means that any tree can have height at most lg n. Therefore, find and union have
a worst-case time complexity of O(lg n) and link has a worst-case time complexity of
O(1).

2.4 Lower bound on time when compress path is False

When there is no path compression, we can lower bound the worst-case time complexity
of find.

Consider these union operations:

1 for i in range(int(log2(n))):

2 for j in range(0, n, 1 << (i+1)):

3 union(j, j + (1 << i))

The body of the outer loop is called a round. There are ⌊lg n⌋ rounds.

Number of union operations:

⌊lgn⌋∑
i=1

⌊ n
2i

⌋
≤ n

⌊lgn⌋∑
i=1

1

2i
≤ n

(
1− 2⌊lgn⌋

)
≤ n− 1

Theorem 3. After i rounds, there are
⌊
n
2i

⌋
trees with height i and size 2i.

Proof by induction. Initially there are n trees of height 0 and size 1, so this is true for
i = 0.

Assume the theorem is true for some i (induction hypothesis). Just before the (i + 1)th

round, there are
⌊

n
2i

⌋
trees of height i and size 2i. We can pair them up (if there are odd

number of trees, leave the last one unpaired). When we union them, we get
⌊

n
2i+1

⌋
trees

with height i+ 1 and size 2i+1 (this doesn’t depend on the value of union by).

Therefore, the theorem is true by mathematical induction.

Theorem 4.⌊ n

2⌊lgn⌋

⌋
= 1

Therefore, after ⌊lg n⌋ rounds, there is one tree of height ⌊lg n⌋. Therefore, worst-case
time complexity of find is Ω(lg n).

2.5 Both union-by-rank and path-compression

2.5.1 Alt-Ackermann function

Definition 1. For j ≥ 0 and k ≥ 0,

Ak(j) =

{
j + 1 k = 0

A
(j+1)
k−1 (j) k ≥ 1

Here A
(0)
k (j) = j and A

(i)
k (j) = Ak(A

(i−1)
k (j)).

5

Theorem 5. Ak(0) = 1

Theorem 6. A1(j) = 2j + 1

Theorem 7. A2(j) = 2j+1(j + 1)− 1

Theorem 8. A3(1) = 2047

Theorem 9. Ak(j) is a non-decreasing function of k and j.

Theorem 10. A4(1) is way too large.

Proof.

A4(1)

= A3(A3(1))

= A3(2047)

= A
(2048)
2 (2047)

≥ A
(2)
2 (2047)

= A2(A2(2047))

= A2(2
2048 × 2048− 1)

= 2(2
2059−1) (22059)− 1

> 22
2059

> 1616
514

Definition 2. α(n) = min({k : Ak(1) ≥ n})

Theorem 11. p < α(n) ≤ q ⇐⇒ Ap(1) < n ≤ Aq(1)

2.5.2 level and iter

Let F be a DSU forest with n nodes. For a node x, let x.p be its parent and x.rank be
its rank.

Theorem 12. x ̸= x.p =⇒ x.rank < x.p.rank

Theorem 13. x.rank ≤ ⌊lg n⌋ ≤ n− 1

We can partition the set of nodes into 3 parts:

• root nodes: {x : x = x.p}.

• leaf nodes: {x : x.rank = 0}.

• internal nodes: non-root and non-leaf nodes.

level and iter are functions which map an internal node x to an integer.

6

Definition 3. level(x) = max({k : Ak(x.rank) ≤ x.p.rank})

Theorem 14. k ≤ level(x) ⇐⇒ Ak(x.rank) ≤ x.p.rank

Theorem 15. 0 ≤ level(x) < α(⌊lg n⌋+ 1) ≤ α(n)

Definition 4. iter(x) = max({i : A(i)
level(x)(x.rank) ≤ x.p.rank})

Theorem 16. i ≤ iter(x) ⇐⇒ A
(i)
level(x)(x.rank) ≤ x.p.rank})

Theorem 17. 1 ≤ iter(x) ≤ x.rank

2.5.3 Potential function

Definition 5. For a node x, the potential function ϕ(x) is given by

ϕ(x) =

{
α(n) · x.rank x is a root or leaf node

(α(n)− level(x)) · x.rank − iter(x) otherwise

Theorem 18. x is an internal node =⇒ 0 ≤ ϕ(x) < α(n) · x.rank.

To be continued . . .

7

	1 Problem
	2 Forest algorithm
	2.1 Performance with no optimizations
	2.2 rank upper-bounds height
	2.3 Performance when union_by is not None
	2.4 Lower bound on time when compress_path is False
	2.5 Both union-by-rank and path-compression
	2.5.1 Alt-Ackermann function
	2.5.2 level and iter
	2.5.3 Potential function

