Disjoint-set Union

Eklavya Sharma

Contents

1	Pro	blem	2
2	Fore	est algorithm	2
	2.1	Performance with no optimizations	3
	2.2	rank upper-bounds height	3
	2.3	Performance when union_by is not None	4
	2.4	Lower bound on time when compress_path is False	5
	2.5	Both union-by-rank and path-compression	
		2.5.1 Alt-Ackermann function	5
		2.5.2 level and iter \ldots	6
		2.5.3 Potential function	7

All (pseudo-)code in this document is based on the python programming language.

1 Problem

In the Disjoint-set Union (DSU) problem, we are given a set S of n singleton sets, i.e. $S = \{\{i\} : 0 \le i < n\}.$

We have to perform m operations on S. Each operation can modify S while maintaining these 2 invariants:

- 1. All elements of S are sets.
- 2. Every integer from 0 to n-1 lies in exactly one set in S.

Also, for every set $X \in S$, one of the elements of X will be known as the 'representative of X', denoted as repr(X).

Types of operations allowed

- 1. find(x): If $x \in X$, return repr(X).
- 2. union(x, y): Let $x \in X$ and $y \in Y$. Then remove X and Y from S and add $X \cup Y$ to S.

union(x, y) is the only operation which can modify S. It is easy to see that union(x, y) maintains the 2 invariants.

2 Forest algorithm

The 'forest algorithm' for DSU maintains a forest F = (V, E) of rooted trees where $V = \{i \in \mathbb{Z} : 0 \le i < n\}$. Each tree in F corresponds to a set in S. The representative of a set is the root of the corresponding tree.

The forest is stored by keeping track of the parent of each vertex in an array parent of size n. If a vertex x has no parent, then parent[x] = x. The algorithm (optionally) maintains 2 additional arrays rank and size. rank[i] is an upper-bound on the height of vertex i and size[i] is the size of the subtree rooted at vertex i. Initially parent[i] = i, rank[i] = 0 and size[i] = 1 for all $0 \le i < n$.

This algorithm offers 2 hyperparameters. These are optional optimizations for speeding up DSU.

- 1. union_by: can be None, rank or size.
- 2. compress_path: can be False or True.

This is how find and union are implemented:

```
def find(x):
1
        if parent[x] == x:
2
            return x
3
       else:
4
            r = find(parent[x])
5
            if compress_path:
6
                 parent[x] = r
7
            return r
8
9
   def link(x, y):
10
       parent[y] = x
11
       size[x] += size[y]
12
       rank[x] = max(rank[x], rank[y] + 1)
13
14
   def union(x, y):
15
       x = find(x)
16
       y = find(y)
17
        if union_by is not None and union_by[x] < union_by[y]:
18
            x, y = y, x
19
20
       link(x, y)
^{21}
       return x != y
22
```

2.1 Performance with no optimizations

Consider the following operations:

```
1 for i in range(1, n):
2 union(i, i-1)
3 for i in range(1, m - n):
4 find(0)
```

When union_by is None, union(x, y) makes the tree of y a subtree of x. Therefore, after all the union operations, the forest will be a single chain from 0 to n-1. If compress_path is False, each find(0) operation will take $\Theta(n)$ time. Each union operation takes $\Theta(1)$ time. Therefore, total time taken is $\Theta((m-n)n)$.

2.2 rank upper-bounds height

For a tree T, let h(T) denote its height, n(T) denote the number of nodes in it and $r(T) = \operatorname{rank}(\operatorname{repr}(T))$.

Theorem 1. $h(T) \leq r(T)$ throughout the algorithm.

Proof. Initially, h(T) = r(T) = 0 for every tree T.

In a find operation, the height of a tree can only reduce (it can reduce if compress_path is True, otherwise it doesn't change).

Suppose link(x, y) is called and $x \in X$ and $y \in Y$. Then Y is made a subtree of X. Let the resulting tree be Z. Suppose $h(X) \leq r(X)$ and $h(Y) \leq r(Y)$.

$$h(Z) = \max(h(X), h(Y) + 1) \le \max(r(X), r(Y) + 1) = r(Z)$$

Since $h(T) \leq r(T)$ is initially true and remains true across find and union operations, $h(T) \leq r(T)$ is true for all trees across the entire DSU algorithm. \Box

2.3 Performance when union_by is not None

Theorem 2. union_by \neq None $\implies \forall T, r(T) \leq \lg n(T)$.

Proof. Initially, $\forall T, r(T) = 0 = \lg 1 = \lg n(T)$.

find operations affect neither r nor n.

Suppose link(x, y) is called and $x \in X$ and $y \in Y$. Then Y is made a subtree of X. Let the resulting tree be Z. Suppose $r(X) \leq \lg n(X)$ and $r(Y) \leq \lg n(Y)$. $r(Z) = \max(r(X), 1 + r(Y))$ and n(Z) = n(X) + n(Y).

Case 1: union_by = size
union_by = size
$$\implies n(Y) \le n(X)$$
.
 $r(Z) = \max(r(X), r(Y) + 1)$
 $\le \max(\lg n(X), \lg n(Y) + 1)$
 $\le \max(\lg n(X), \lg(2n(Y)))$
 $\le \lg \max(n(X), 2n(Y))$
 $n(X) \le n(X) + n(Y)$ and $n(Y) \le n(X) \Rightarrow 2n(Y) \le n(X) + n(Y)$.
 $\implies r(Z) \le \lg \max(n(X), 2n(Y)) \le \lg(n(X) + n(Y)) = \lg n(Z)$

Case 2: union_by = rank union_by = rank $\implies r(Y) \le r(X)$. Case 2a: r(Y) < r(X)

> $r(Z) = \max(r(X), 1 + r(Y)) = h(X)$ $\leq \lg n(X) \leq \lg n(X) + n(Y) \leq \lg n(Z)$

Case 2b: r(Y) = r(X)

$$\begin{split} r(Z) &= \max(r(X), 1 + r(Y)) = 1 + r(Y) = 1 + r(X) \\ \Rightarrow r(Z) &\leq 1 + \lg n(Y) \land r(Z) \leq 1 + \lg n(X) \\ \Rightarrow r(Z) &\leq 1 + \min(\lg n(Y), \lg n(X)) \\ \Rightarrow r(Z) &\leq \lg(2\min(n(X), n(Y))) \\ \Rightarrow r(Z) &\leq \lg(n(X) + n(Y)) = \lg n(Z) \end{split}$$

For both cases 1 and 2, $r(Z) \leq \lg n(Z)$. Therefore, union preserves the invariant $\forall T, r(T) \leq \lg n(T)$.

This means that any tree can have height at most $\lg n$. Therefore, find and union have a worst-case time complexity of $O(\lg n)$ and link has a worst-case time complexity of O(1).

2.4 Lower bound on time when compress_path is False

When there is no path compression, we can lower bound the worst-case time complexity of find.

Consider these union operations:

```
1 for i in range(int(log2(n))):
2 for j in range(0, n, 1 << (i+1)):
3 union(j, j + (1 << i))</pre>
```

The body of the outer loop is called a round. There are $\lfloor \lg n \rfloor$ rounds.

Number of union operations:

$$\sum_{i=1}^{\lfloor \lg n \rfloor} \left\lfloor \frac{n}{2^i} \right\rfloor \le n \sum_{i=1}^{\lfloor \lg n \rfloor} \frac{1}{2^i} \le n \left(1 - 2^{\lfloor \lg n \rfloor}\right) \le n - 1$$

Theorem 3. After *i* rounds, there are $\left|\frac{n}{2^{i}}\right|$ trees with height *i* and size 2^{i} .

Proof by induction. Initially there are n trees of height 0 and size 1, so this is true for i = 0.

Assume the theorem is true for some i (induction hypothesis). Just before the $(i + 1)^{\text{th}}$ round, there are $\lfloor \frac{n}{2^i} \rfloor$ trees of height i and size 2^i . We can pair them up (if there are odd number of trees, leave the last one unpaired). When we union them, we get $\lfloor \frac{n}{2^{i+1}} \rfloor$ trees with height i + 1 and size 2^{i+1} (this doesn't depend on the value of union_by).

Therefore, the theorem is true by mathematical induction.

Theorem 4.

$$\left\lfloor \frac{n}{2^{\lfloor \lg n \rfloor}} \right\rfloor = 1$$

Therefore, after $\lfloor \lg n \rfloor$ rounds, there is one tree of height $\lfloor \lg n \rfloor$. Therefore, worst-case time complexity of find is $\Omega(\lg n)$.

2.5 Both union-by-rank and path-compression

2.5.1 Alt-Ackermann function

Definition 1. For $j \ge 0$ and $k \ge 0$,

$$A_k(j) = \begin{cases} j+1 & k=0\\ A_{k-1}^{(j+1)}(j) & k \ge 1 \end{cases}$$

Here $A_k^{(0)}(j) = j$ and $A_k^{(i)}(j) = A_k(A_k^{(i-1)}(j)).$

Theorem 5. $A_k(0) = 1$ Theorem 6. $A_1(j) = 2j + 1$ Theorem 7. $A_2(j) = 2^{j+1}(j+1) - 1$ Theorem 8. $A_3(1) = 2047$

Theorem 9. $A_k(j)$ is a non-decreasing function of k and j.

Theorem 10. $A_4(1)$ is way too large.

Proof.

 $A_4(1) = A_3(A_3(1)) = A_3(2047) = A_2^{(2048)}(2047) = A_2^{(2)}(2047) = A_2(A_2(2047)) = A_2(A_2(2047)) = A_2(2^{2048} \times 2048 - 1) = 2^{(2^{2059} - 1)} (2^{2059}) - 1 > 2^{2^{2059}} > 16^{16^{514}}$

Definition 2. $\alpha(n) = \min(\{k : A_k(1) \ge n\})$

Theorem 11. $p < \alpha(n) \le q \iff A_p(1) < n \le A_q(1)$

2.5.2 level and iter

Let F be a DSU forest with n nodes. For a node x, let x.p be its parent and x.rank be its rank.

Theorem 12. $x \neq x.p \implies x.rank < x.p.rank$

Theorem 13. $x.rank \leq \lfloor \lg n \rfloor \leq n-1$

We can partition the set of nodes into 3 parts:

- root nodes: $\{x : x = x.p\}$.
- leaf nodes: $\{x : x.rank = 0\}$.
- internal nodes: non-root and non-leaf nodes.

level and iter are functions which map an internal node x to an integer.

Definition 3. $\operatorname{level}(x) = \max(\{k : A_k(x.rank) \le x.p.rank\})$ **Theorem 14.** $k \le \operatorname{level}(x) \iff A_k(x.rank) \le x.p.rank$ **Theorem 15.** $0 \le \operatorname{level}(x) < \alpha(\lfloor \lg n \rfloor + 1) \le \alpha(n)$ **Definition 4.** $\operatorname{iter}(x) = \max(\{i : A_{\operatorname{level}(x)}^{(i)}(x.rank) \le x.p.rank\})$ **Theorem 16.** $i \le \operatorname{iter}(x) \iff A_{\operatorname{level}(x)}^{(i)}(x.rank) \le x.p.rank\})$ **Theorem 17.** $1 \le \operatorname{iter}(x) \le x.rank$

2.5.3 Potential function

Definition 5. For a node x, the potential function $\phi(x)$ is given by

$$\phi(x) = \begin{cases} \alpha(n) \cdot x.rank & x \text{ is a root or leaf node} \\ (\alpha(n) - \text{level}(x)) \cdot x.rank - \text{iter}(x) & otherwise \end{cases}$$

Theorem 18. x is an internal node $\implies 0 \le \phi(x) < \alpha(n) \cdot x.rank$.

To be continued ...