Theorems

1 Abstract Algebra

Definition 1. A monoid M is a set S along with a binary operator $\circ: S \times S \to S$ which satisfies these properties:

- 1. Associativity: $\forall a, b, c \in S$, $(a \circ b) \circ c = a \circ (b \circ c)$.
- 2. Existence of Identity: There exists an element $e \in S$, called an identity of S, such that $\forall a \in S, \ a \circ e = e \circ a = a$.

Lemma 1. Every monoid has a unique identity.

Proof. Let $M = (S, \circ)$ be a monoid. Let e_1 and e_2 be any two (possibly identical) identities of M. Then $e_1 \circ e_2 = e_1$, because e_2 is an identity, and $e_1 \circ e_2 = e_2$, because e_1 is an identity. Hence, $e_1 = e_2$. Hence, M has a unique identity

2 Convexity

Definition 2. For a finite set $P := \{x_1, \dots, x_n\}$, the convex hull of P is defined as

$$\operatorname{conv}(P) := \left\{ \sum_{i=1}^{n} \alpha_i x_i \mid \alpha_i \in \mathbb{R}_{\geq 0} \text{ and } \sum_{i=1}^{n} \alpha_i = 1 \right\}.$$

Theorem 2 (Carathéodory's theorem [1]). Let $x \in \text{conv}(P)$, where $P \subseteq \mathbb{R}^d$ is a finite set. Then $x \in \text{conv}(Q)$, where $Q \subseteq P$ and $|Q| \leq d+1$.

References

[1] Constantin Carathéodory. Uber den variabilitätsbereich der fourier'schen konstanten von positiven harmonischen funktionen. Rendiconti Del Circolo Matematico di Palermo (1884-1940), 32(1):193-217, 1911. doi:10.1007/BF03014795.