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Before I begin
• Audience distribution.
• Please volunteer to talk at ISE student seminars.
• This is not a SoTA result talk. It’s for a general 

audience. You should be able to follow along.
• If you have questions, interrupt me.



Fair Division of Goods

Divide goods among 𝑛 people (called agents), who 
are all ‘equally deserving’.

Divisible (continuous version): Indivisible (discrete version):



Fair Division of Goods
• Trivial for divisible and homogeneous goods.
• Indivisible goods:
• Toys, candy
• Dividing Inheritance
• Business partnership dissolution
• Divorce settlements

• Divisible goods:
• Cake
• Land
• Radio frequency spectrum
• Airplane runway time



Formalizing the Problem
• Formalizing roughly means deciding input and 

output format.

• Set 𝑁 = 1, 2, … , 𝑛 of agents.
Agents can be people, companies, countries, etc.

• Set 𝑀 of goods:
• Divisible: 𝑀 = [0, 1].
• Indivisible: 𝑀 = {1, 2, … ,𝑚}.



Valuation Functions
• Each agent 𝑖 has a valuation function 𝑣! that 

encodes their preferences:
• Input: Subset 𝑆 ⊆ 𝑀 of goods.
• Output: A non-negative real number: how much they 

like 𝑆.

• Input: List (𝑣", 𝑣#, … , 𝑣$) of valuation functions.

• 𝑣!(∅) = 0. Monotonicity: 𝑆 ⊆ 𝑇 ⟹ 𝑣!(𝑆) ≤ 𝑣!(𝑇).



Additive valuations
• Additivity: 𝑣!(𝑆 ⊔ 𝑇) = 𝑣!(𝑆) + 𝑣!(𝑇).

(All valuations in this talk are additive, except when 
I say otherwise.)

• Examples against additivity:
pair of socks, pair of identical cars.

• For indivisible goods, additivity means
𝑣!(𝑆) = ∑%∈' 𝑣!( 𝑔 ).

• Indivisible input format: valuation matrix: 𝑣!({𝑗}).



Output format
• An allocation 𝑋 is a partition of 𝑀 into 𝑛 parts, i.e.,
𝑋 = (𝑋", 𝑋#, … , 𝑋$) is an 𝑛-tuple such that
⋃!∈( 𝑋! = 𝑀 and 𝑋! ∩ 𝑋) = ∅ for 𝑖 ≠ 𝑗.

• 𝑋! is called agent 𝑖’s bundle in allocation 𝑋.

• We need to find an allocation that is fair.



Notions of Fairness



Envy-Freeness
• In allocation 𝑋, agent 𝑖 envies agent 𝑗 if
𝑣!(𝑋)) > 𝑣!(𝑋!).
• 𝑋 is envy-free (EF) if no one envies anyone else.
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Proportionality
• Allocation 𝑋 is proportional (PROP) if 𝑣!(𝑋!) ≥
𝑣!(𝑀)/𝑛 for each agent 𝑖.
• This example is also PROP.

avg
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Dividing a cake among 2 agents
• Cut and choose protocol:

1. Alice cuts cake into 2 pieces of equal value to her.
2. Bob picks the piece which he prefers.
3. Alice gets the remaining piece.

• The output is an envy-free allocation. (Why?)
• This works even for non-additive valuations.



Exercise: An EF allocation is PROP 
• Theorem: If 𝑋 is an EF allocation, then 𝑋 is PROP.

(only true for additive valuations.)



Exercise: An EF allocation is PROP 
• Theorem: If 𝑋 is an EF allocation, then 𝑋 is PROP.

(only true for additive valuations.)
• Proof. For each agent 𝑖,

𝑣!(𝑋!) ≥ 𝑣!(𝑋")
𝑣!(𝑋!) ≥ 𝑣!(𝑋#)

⋮
𝑣!(𝑋!) ≥ 𝑣!(𝑋$)

• Add all these inequalities together to get
𝑛𝑣!(𝑋!) ≥ 𝑣!(𝑀)



Dubins-Spanier Algorithm
• Algorithm for PROP cake cutting for 𝑛 agents.
• Cake is 1-dimensional interval 𝑀 = [𝑎, 𝑏].
• Algorithm:
• Each agent 𝑖 tells a point 𝑥! ∈ [𝑎, 𝑏] such that 
𝑣!([𝑎, 𝑥!]) = 𝑣!(𝑀)/𝑛.
• Suppose agent 𝑘 has the smallest 𝑥".
• Give [𝑎, 𝑥"] to agent 𝑘 and recurse.

• Key observation: 𝑣!(𝑀 ∖ [𝑎, 𝑥*]) ≥
$+"
$
𝑣!(𝑀) ∀𝑖.

• Bonus: Pieces are connected.



EF cake cutting
• EF allocations exist, even when we insist on 

connected pieces.
• EF algorithms for 𝑛 ≥ 3 are complicated and have a 

large running time.
• For piecewise-constant valuation functions, 

efficient EF algorithms exist.



Efficiency
• Fairness isn’t the only concern.
• Alice prefers blueberry and Bob prefers chocolate.
• Both allocations are fair. But one is better.

Alice

Alice

Bob Bob



Pareto Optimality (PO)
• Intuitively, an allocation is pareto optimal (PO) if it’s 

impossible to make someone happier without 
making someone else sadder.
• Allocation 𝑋 pareto-dominates allocation 𝑌 iff both 

of the following are true:
• no one prefers 𝑌: ∀𝑖, 𝑣!(𝑋!) ≥ 𝑣!(𝑌!).
• someone prefers 𝑋: ∃𝑖, 𝑣! 𝑋! > 𝑣!(𝑌!).

• Allocation X is pareto-optimal (PO) if it is not 
pareto-dominated by any other allocation.



Nash Social Welfare (NSW)
• PO is a weak notion: maybe we can make someone 

a lot happier by making someone slightly sadder.
• NSW is the ‘average’ happiness of an allocation.

• NSW(𝑋) = ! 𝑣"(𝑋")𝑣#(𝑋#)⋯𝑣$(𝑋$).
• An alloc that maximizes NSW is Nash Optimal (NO).



Nash Social Welfare (NSW)
• PO is a weak notion: maybe we can make someone 

a lot happier by making someone slightly sadder.
• NSW is the ‘average’ happiness of an allocation.

• NSW(𝑋) = ! 𝑣"(𝑋")𝑣#(𝑋#)⋯𝑣$(𝑋$).
• An alloc that maximizes NSW is Nash Optimal (NO).
• NO implies PO.
• In practice, NO allocations are fair.
• A Nash-optimal cake division is EF[1].

https://www.cs.toronto.edu/~nisarg/teaching/2556s19/slides/2556s19-L6.pdf


Fairness for
Indivisible Goods



EF and PROP are not guaranteed
• For divisible goods, EF and PROP always exist.
• But not for indivisible goods: e.g., single good.
• We can’t be fair, but we can be approximately fair.

5 + 2 + 1 3 + 3 + 2



Fairness for the Indivisible setting
• Suppose there are 𝑚 identical goods and 𝑛 agents.
• Each agent should get 𝑚/𝑛 or 𝑚/𝑛 goods.
• How do we generalize this idea?

𝑚 = 10 3 + 3 + 2 + 2

𝑛 = 4



EFX (EF up to any good)
• Observation: 𝑚/𝑛 − 𝑚/𝑛 ≤ 1.
• In allocation 𝑋, agent 𝑖 strongly envies agent 𝑗 if
∃𝑔 ∈ 𝑋) s.t. 𝑣!(𝑋!) < 𝑣!(𝑋) − {𝑔}).
Equivalently, 𝑣! 𝑋! < max

%∈,"
𝑣! 𝑋) − {𝑔} .

• 𝑋 is EFX if no one strongly envies anyone else.
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EFX: Existence and Computation
• Important problems:
• Do EFX allocations always exist?
• Can we efficiently compute EFX allocations?

• EFX exists when 𝑛 = 2 or identical valuations (even 
for non-additive) [PR SODA’18].
• EFX exists for 𝑛 = 3 [CGM EC’20].
• For 𝑛 ≥ 4, open problem since 2016.
• Relaxations of EFX:
• EF1 [EC’04], α-EFX [TCS’20], EFX-with-charity [SODA’20], 

Epistemic EFX.

https://doi.org/10.1137/19M124397X
https://doi.org/10.1145/3391403.3399511
https://doi.org/10.1145/988772.988792
https://doi.org/10.1016/j.tcs.2020.07.006
https://doi.org/10.1137/20M1359134


MaxiMin Share (MMS)
• MMS: relaxation of PROP for indivisible goods.
• Threshold based fairness: 𝑣!(𝑋!) ≥ 𝜇!.
• PROP: 𝜇! = 𝑣!(𝑀)/𝑛.

1 1 1 6

1 1 1 6

10 10 10 60

• MMS: 𝜇! is the max value so 
that ∃𝑋, 𝑣!(𝑋)) ≥ 𝜇! ∀𝑗.

𝜇! = max
,

min
)∈(

𝑣!(𝑋))

• 𝑋 is MMS if 𝑣!(𝑋!) ≥ 𝜇! ∀𝑖.
𝜇# = 𝜇$ = 1, 𝜇% = 10



MMS: Existence and Computation
• Important problems:
• Do MMS allocations always exist?
• Can we efficiently compute MMS allocations?

• MMS exists when idval. NP-hard even for 𝑛 = 2.
• There is a known example with 𝑛 = 3 for which an 

MMS allocation doesn’t exist [EC’14].
• Relaxation: α-MMS: 𝑣!(𝑋!) ≥ 𝛼𝜇! ∀𝑖 (𝛼 ∈ (0,1]).
• (3/4)-MMS in strong polytime [GT EC’20].

https://doi.org/10.1145/3140756
https://doi.org/10.1016/j.artint.2021.103547


Summary
• Formalizing fair division.
• Divisible goods:
• EF and PROP.
• EF for 2 agents using cut-and-choose.
• PROP using Dubins-Spanier.
• Efficiency: PO and NSW.

• Indivisible goods:
• EFX and MMS.



Social Choice Theory
How can multiple agents make a joint decision?
• Fair division of goods.
• Fair division of chores.
• Splitting rent.
• Which activities should a group of friends do 

together over the weekend?



Thank You
Questions?

Image credits: openmoji.org (CC BY-SA 4.0), imgflip.com

https://openmoji.org/
https://creativecommons.org/licenses/by-sa/4.0/


Homework
Fair cake cutting:
1. Show that when agents have identical valuations, a 

Nash optimal allocation is envy free.
Fair division of indivisible goods:
1. Find a PROP allocation that is not EF.
2. Show that MMS allocations exist when:

i. there are only 2 agents (hint: cut-and-choose).
ii. all agents have the same valuation function.

3. Give a fast algorithm to find an EFX allocation when:
i. there are only 2 agents (hint: cut-and-choose).
ii. all agents have the same valuation function (hint: greedy).


