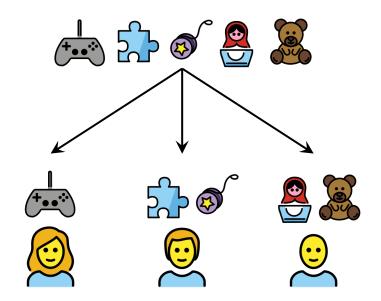
New Fairness Concepts for Allocating Indivisible Items

Ioannis Caragiannis (Aarhus) Jugal Garg (UIUC) Nidhi Rathi (Aarhus) **Eklavya Sharma** (UIUC) Giovanna Varricchio (Goethe Univ, Frankfurt)

Fair Division of Goods

Divide goods among *n* people (called agents), who are all 'equally deserving'.



Formalizing the Problem

- Set $N = \{1, 2, ..., n\}$ of agents.
- Set $M = \{1, 2, ..., m\}$ of goods.
- $v_i(g) \in \mathbb{R}_{\geq 0}$ is called *i*'s valuation for good $g \in M$.

Formalizing the Problem

- Set $N = \{1, 2, ..., n\}$ of agents.
- Set $M = \{1, 2, ..., m\}$ of goods.
- $v_i(g) \in \mathbb{R}_{\geq 0}$ is called *i*'s valuation for good $g \in M$.
- v_i is called agent *i*'s valuation function.
- Extending to subsets of goods:
 - For $S \subseteq M$, $v_i(S) = \sum_{g \in S} v_i(g)$.

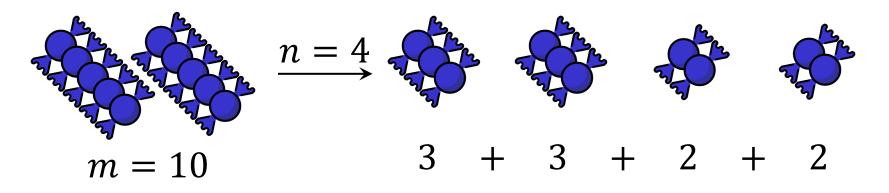
Formalizing the Problem (cont.)

- An allocation X is a specification of who gets what: an *n*-tuple (X₁, X₂, ..., X_n) where X_i is the set of goods that agent *i* gets.
- X_i is called agent *i*'s *bundle* in allocation X.
- We need to find an allocation that is *fair*.

Notions of Fairness

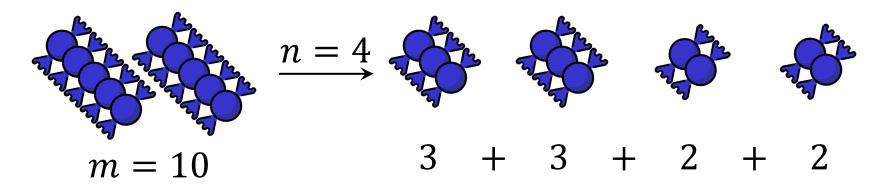
Simple example

- Suppose there are *m* identical goods and *n* agents.
- Each agent should get $\lfloor m/n \rfloor$ or $\lceil m/n \rceil$ goods.



Simple example

- Suppose there are *m* identical goods and *n* agents.
- Each agent should get $\lfloor m/n \rfloor$ or $\lceil m/n \rceil$ goods.



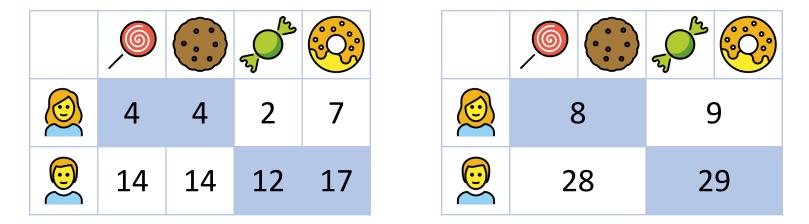
- How do we generalize this idea? 2 observations:
 - $[m/n] \lfloor m/n \rfloor \le 1$.
 - Each agent gets roughly 1/n fraction of goods.

EF and EFX

- In allocation X,
 - agent *i* envies agent *j* if $v_i(X_i) < v_i(X_j)$.
 - agent *i* **strongly envies** agent *j* if $\exists g \in X_j$ s.t. $v_i(X_i) < v_i(X_j - \{g\})$.
- X is envy-free (EF) if no one envies anyone else.
- X is **EFX** if no one strongly envies anyone else.

EF and EFX

- In allocation X,
 - agent *i* envies agent *j* if $v_i(X_i) < v_i(X_j)$.
 - agent *i* strongly envies agent *j* if $\exists g \in X_j$ s.t. $v_i(X_i) < v_i(X_j - \{g\})$.
- X is envy-free (EF) if no one envies anyone else.
- X is **EFX** if no one strongly envies anyone else.



Existence of EF and EFX

- EF allocations may not exist (e.g., single good).
- Important problems:
 - Do EFX allocations always exist?
 - Can we efficiently compute EFX allocations?
- EFX exists for special cases ($n \leq 3$ or identical v_i).
- Open problem since 2016.
- Relaxations of EFX have been studied:
 - EF1 [<u>EC'04</u>], α-EFX [<u>TCS'20</u>], EFX-with-charity [<u>SODA'20</u>].

PROP and MMS

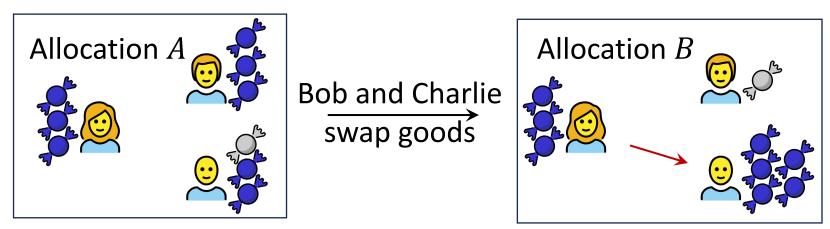
- Allocation X is PROP if $\forall i, v_i(X_i) \ge v_i(M)/n$.
- PROP allocations may not exist (e.g., single good).
- An allocation X is MMS if for every agent i, $v_i(X_i) \ge \max_{Z} \min_{i} v_i(Z_j)$
- MMS had been a compelling fairness notion for a long time, but in 2014 it was shown to not always exist.

Towards a different notion of fairness

EFX and MMS currently can't be used. We show a relaxation of EFX that's almost as good as EFX.

Motivating Example

- 3 agents (Alice, Bob, Charlie) and 9 goods.
- All goods are identical to Alice.



• Alice has the same bundle in A and B, yet she considers A fair (by EFX) and B unfair.

The MYOB principle

- Mind-Your-Own-Business (MYOB) principle: whether an allocation is fair to you should depend only on your own bundle.
- How the remaining goods are distributed among the other agents is none of your business.

The MYOB principle

- Mind-Your-Own-Business (MYOB) principle: whether an allocation is fair to you should depend only on your own bundle.
- How the remaining goods are distributed among the other agents is none of your business.
- PROP and MMS follow MYOB. EF and EFX don't.
- Violating MYOB doesn't make a fairness notion bad.
- EFX is too demanding.

Epistemic fairness

- An allocation X is **epistemic EFX** if for each agent *i*,
 - we can redistribute goods outside X_i to agents $N \setminus \{i\}$
 - such that *i* doesn't strongly envy anyone anymore.
- Formally, allocation X is Epistemic EFX if for each agent i, there is an allocation Y s.t. X_i = Y_i and agent i is strong-envy-free in Y.
- Y is called i's certificate of fairness.
 Different agents can have different certificates.

Y (EFX for Alice)

X (not EFX, but Epistemic EFX for Alice)

Epistemic EFX

- Epistemic EFX follows MYOB.
- Although Epistemic EFX is a relaxation of EFX, it seems to be almost as good as EFX.
- Do Epistemic EFX allocations always exist? Yes!

Our Contributions

- [<u>BK EC'17</u>] gave a polytime algorithm for 2/3-MMS. We show that their algorithm's output is also Epistemic EFX.
- MMS \Rightarrow Epistemic EFX \Rightarrow PROP1.

Open Problems

- 1. Epistemic EFX for non-additive valuations.
- 2. Epistemic EFX + other notions of fairness:
 - EF1, α-EFX, α-MMS.
- 3. Epistemic EFX + PO.

Thank You

Image credits: <u>openmoji.org</u> (<u>CC BY-SA 4.0</u>)

Algorithm

• An instance is ordered if for each agent i, $v_i(1) \ge v_i(2) \ge \cdots \ge v_i(m)$.

