

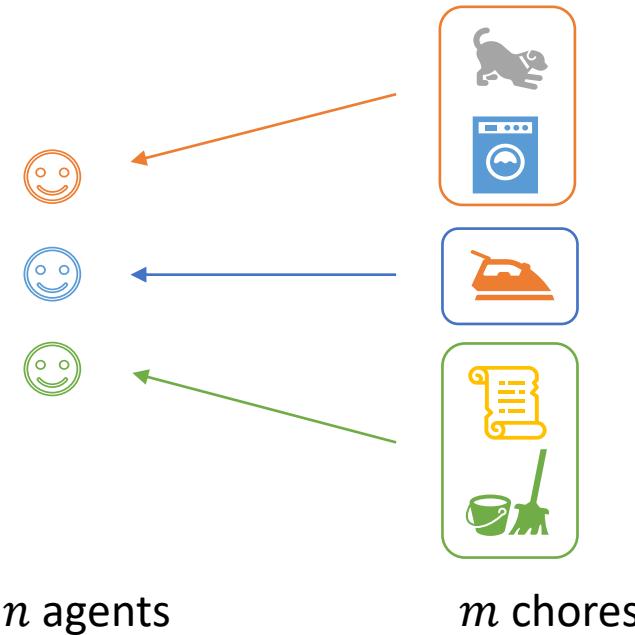
New Algorithms for the Fair and Efficient Allocation of Indivisible Chores

Jugal Garg, **Aniket Murhekar**, John Qin

University of Illinois, Urbana-Champaign (UIUC)

IJCAI/2023 MACAO

Fair Division of Indivisible Chores



- Goods: Items that provide value/utility to agents receiving them
- Chores: Items that impose a cost/disutility on agents receiving them
- Problem: Allocate chores to agents in a fair and efficient manner
- Many practical applications:
 - Partnership dissolution
 - Allocating tasks to machines

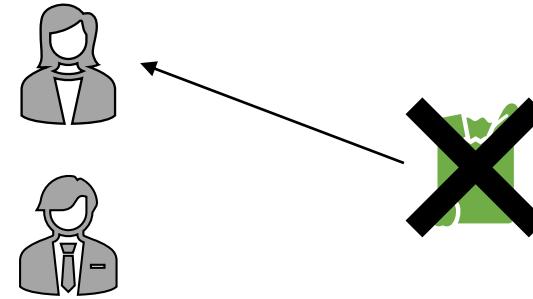
The Model

- n agents, m indivisible chores
- Agent i has disutility $d_{ij} > 0$ for chore j

- Allocation $x = (x_1, \dots x_n)$ is a partition of chores to agents
- Agent i gets *disutility* $d_i(x_i)$ from *bundle* x_i
- Additive disutilities: $d_i(x_i) = \sum_{j \in x_i} d_{ij}$

Fairness Notions: EF and EF1

- Allocation x is *envy-free* (EF) if:
 - Every agent prefers her bundle over others
 - For all agents i, h : $d_i(x_i) \leq d_i(x_h)$
 - EF allocations need not exist
- Allocation x is *envy-free up to one chore* (EF1) if:
 - For all agents i, h , $\exists c \in x_i$ s.t. $d_i(x_i \setminus c) \leq d_i(x_h)$
 - EF1 allocations always exist
 - Envy-Cycle, Round Robin algorithms returns an EF1 allocation



Efficiency: PO

- EF1 allocations are fair but not efficient

- Allocation x is *Pareto-optimal* (PO) if there is no allocation y that makes some agent better-off and no agent worse-off
- *Can we always compute an EF1+PO allocation?*

Fairness + Efficiency

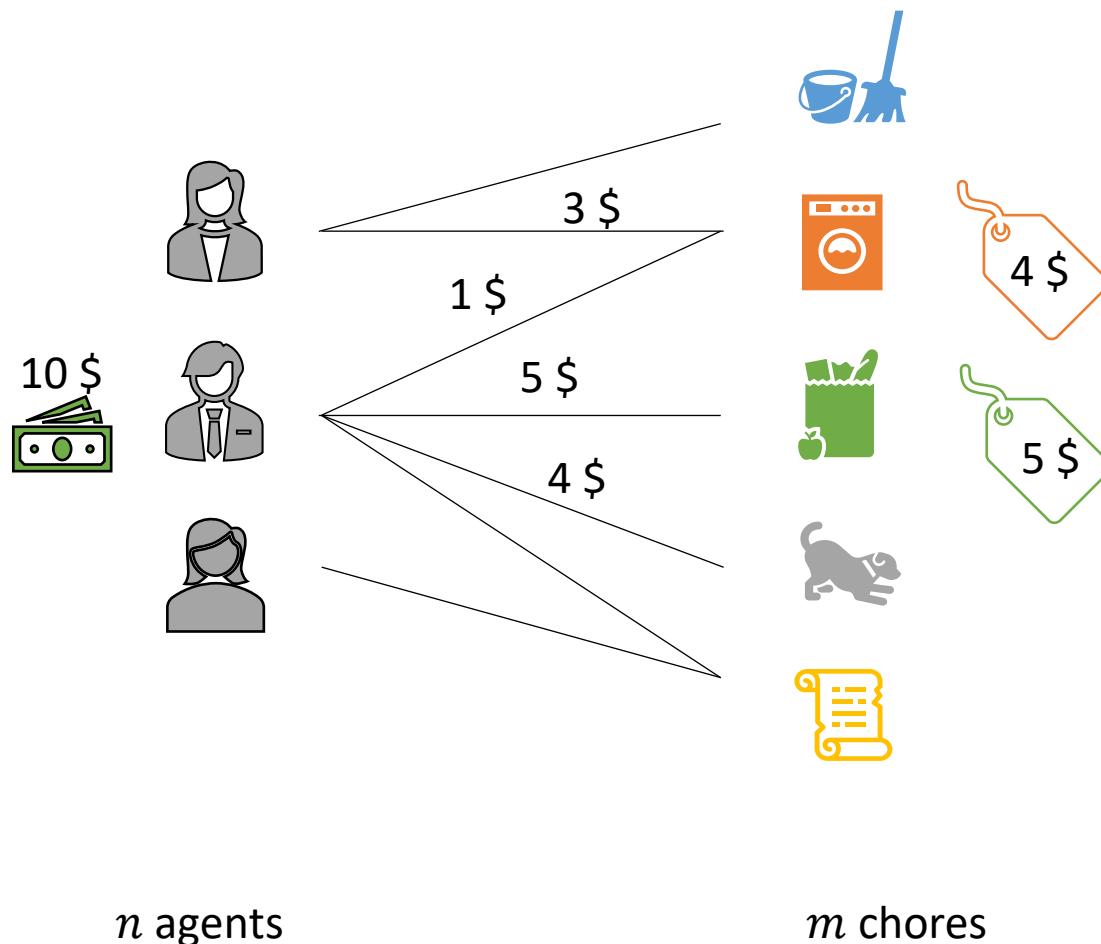
- Open Question: Does an EF1+PO allocation of chores exist?
- Only known results (existence and polynomial-time computation):
 - Two agents; or identical agents
 - Bivalued disutilities [GMQ'22, EPS'22]
 - For every $i \in N, j \in M$: $d_{ij} \in \{a, b\}$
 - Two types of chores [ALRS'22]
- For *goods*, EF1+PO allocations always exist
 - Maximum Nash welfare allocation $\operatorname{argmax}_x (\prod_i v_i(x_i))$ is EF1+PO [CKMPSW'17]
 - Pseudo-polynomial time algorithms which rely on *competitive equilibria* [BKM'18, GM'21]

EF1+PO for chores: Our results

- Open Question: Does an EF1+PO allocation of chores exist?
- Existence and polynomial-time computation known for:
Two agents; identical agents; bivalued chores; two types of chores
- Theorem 1: An EF1+PO allocation of chores exists and can be computed in polynomial time for $n = 3$ agents.
- Theorem 2: An EF1+PO allocation of chores exists and can be computed in polynomial time when there are two types of agents.

Two disutility functions $d_1(\cdot), d_2(\cdot)$

Competitive allocation of chores



Fisher Market for chores

- n agents, agent i with minimum salary s_i
- m chores, chore j with payment $p_j > 0$
- Chores can be fractionally allocated

Competitive equilibrium (x, p)

- All agents earn their minimum salary
- All chores are completely allocated
- Agents only perform chores that give them *minimum pain-per-buck (MPB)*:

$$x_{ij} > 0 \Rightarrow \frac{d_{ij}}{p_j} = \min_c \frac{d_{ic}}{p_c}$$

Competitive equilibria for fair division

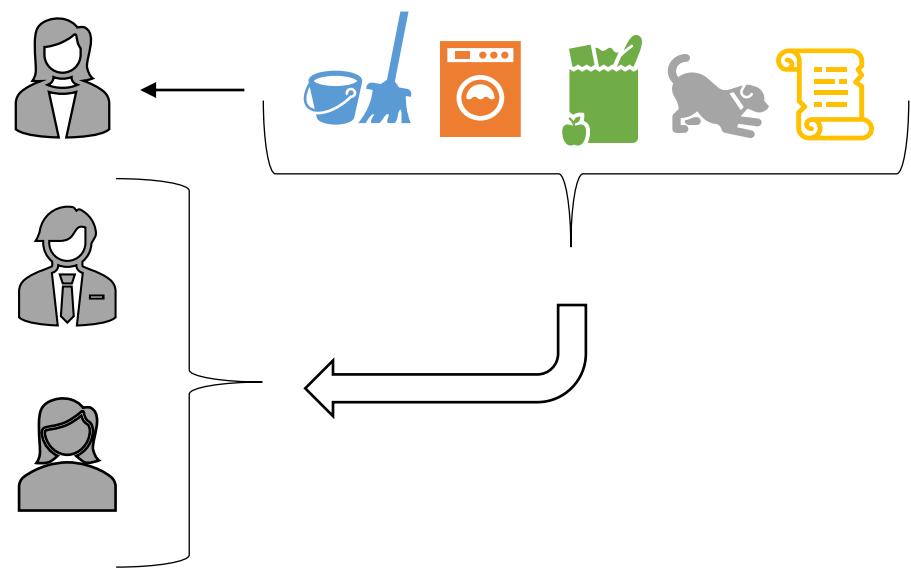
- **Second Welfare Theorem:** For a CE (x, p) , the allocation x is PO
- Payment $p(x_i) = \sum_{j \in x_i} p_j$ can be used as a proxy for disutility $d_i(x_i)$
- To get an EF1+PO allocation, enough to compute an integral CE (x, p) that is **payment EF1 (pEF1)**, i.e.:

For all $i, h: \exists c \in x_i$ s.t. $p(x_i \setminus c) \leq p(x_h)$

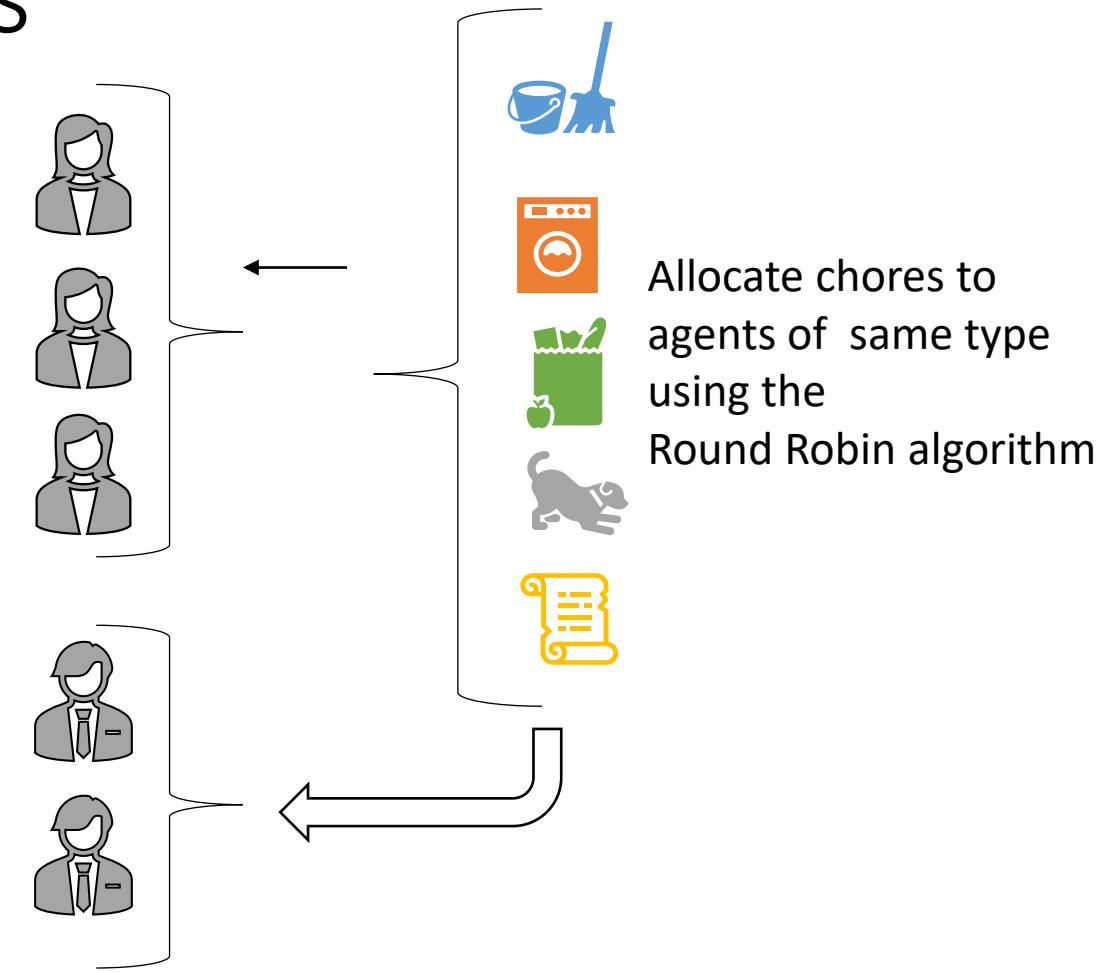
Algorithm overview

- Start with an integral CE (x, p)
- While (x, p) is not pEF1:
 - Transfer chores away from **Big Earner (BE)**: $\operatorname{argmax}_h \min_{c \in x_h} p(x_h \setminus c)$ and towards **Least Earner (LE)**: $\operatorname{argmin}_i p(x_i)$
 - If such a transfer is not possible, raise payments of chores belonging to big earner.
 - Always maintain the minimum pain per buck (MPB) condition.

Key ideas in our algorithms



$n = 3$ agents



Two types of agents

Allocate chores to agents of same type using the Round Robin algorithm

Summary

- EF1+PO allocation of chores exists and can be computed in polynomial time when there are **three agents** or **two types of agents**.
- Also show EFX+PO for **three bivalued agents** in polynomial time.
- For full details, please visit <https://arxiv.org/abs/2212.02440>

Thanks for your attention!

Email: aniket2@illinois.edu