IT ILLINOIS ISE | Industrial & Enterprise Systems Engineering GRAINGER COLLEGE OF ENGINEERING

Nash Equilibrium of Hand Cricket

Aniket Murhekar ¹ Eklavya Sharma 2

¹aniket2@illinois.edu ²eklavya2@illinois.edu

Hand Cricket and RUC Games

We generalize it to *Repeat-Until-Collision (RUC) games*. Parametrized by m atrices $A, B \in \mathbb{R}_{\geq 0}^{n \times n}$ $\sum\limits_{i=0}^{n \times n}$. Rules:

 \bullet

Hand cricket is a two-player game played with hand gestures (like rockpaper-scissors). It is popular among children in India.

Figure 1. Single round of hand cricket, where max player (left) played 5 and min player (right) played 2. Max player earned 5 points. Min player incurred a cost of 5 points. $5 \neq 2$, so game doesn't end.

Min player wants the game to end soon to prevent accumulating a large cost. Max player wants the opposite.

- 1. There are two players: max player (aka batter) and min player (aka bowler).
- 2. There are multiple rounds. In each round, both players simultaneously pick a number from $\{1, 2, \ldots, n\}$.
- 3. If max player picks *i* and min player picks *j*, max player scores *A*[*i, j*], min player incurs a cost of *B*[*i, j*].
- 4. If $i = j$ (collision), the game ends. Else, proceed to next round.
- 5. Max player wants to maximize her (expected) total score. Min player wants to minimize her (expected) total cost.

Hand cricket: $A[i, j] = B[i, j] = i$ when $i \neq j$ and 0 otherwise.

> *Stationary strategy* $x \in \Delta_n$: pick each action *i* with probability *xⁱ* independently in each round.

Max player can score more per round by playing high-scoring actions more frequently, but then the min player can cause a collision sooner. Playing *optimally* requires carefully balancing this tradeoff.

Let $\Delta_n := \{x \in \mathbb{R}^n_{\geq 0}\}$ $\sum_{i=1}^n a_i$ $\sum_{i=1}^{n} x_i = 1$.

If such eigenvectors exist, they would give us NE. But do they exist? Yes!

Perron-Frobenius Theorem. Let *A* ∈ $\mathbb{R}_{\geq 0}^{n \times n}$ be irreducible. Then

- 1. *(Perron root)* ∃ eigenvalue $\rho \in \mathbb{R}_{\geq 0}$ that is largest in absolute value among all (complex) eigenvalues.
- 2. *(Perron vectors)* ∃ unique vectors u and v s.t. $A^Tu = \rho u$, $Av = \rho v$, and $\sum_{i=1}^{n}$ $\sum_{i=1}^n u_i = \sum_{i=1}^n$ $\frac{n}{i=1} v_i = 1.$
- 3. $u_i > 0$ and $v_i > 0$ for all *i*.

Pursuit-Evasion Games

There are *n* locations. Each day, a drug dealer picks a location to sell drugs, and law enforcement picks a location for a random check. If the locations match, the dealer is caught and the game ends.

 $\alpha =$ *s*1 √ $\overline{s_1}$ + √ *s*2 .

This is another example of an RUC game. They are also called *hide-andseek* games.

Nash Equilibria

A pair (*x, y*) of strategies if called a *Nash Equilibrium* (NE) if both of these hold:

- 1. If min player plays *y*, then playing *x* maximizes max player's score.
- 2. If max player plays *x*, then playing *y* minimizes min player's cost.

Our Results

A *stationary RUC (SRUC) game* is one where both players are forced to play only stationary strategies.

Theorem 1. Let *A* and *B* be irreducible matrices.

- 1. $\exists x, y \in \Delta_n$ such that (x, y) is an NE for both the SRUC game and the RUC game.
- 2. NE is unique for SRUC game iff $graph(A) \subseteq graph(B).$
- 3. NE is almost-unique for RUC game if $A = B$.

Proof Sketch

SRUC Games

Theorem 2. If max player plays $x \in$ Δ_n and min player plays $y \in \Delta_n$, then max player's expected total score is x^TAy/x^Ty and min player's expected to- $\tanctan x^T B y / x^T y.$

If *y* is *A*'s eigenvector, max

- player's score is independent of *x*.
- If *x* is *B^T* 's eigenvector, min player's cost is independent of *y*.

Example: If
$$
A = \begin{bmatrix} 0 & s_1 \\ s_2 & 0 \end{bmatrix}
$$
, then $\rho = \sqrt{s_1 s_2}$,
\n $u = (1 - \alpha, \alpha)$, and $v = (\alpha, 1 - \alpha)$, where

RUC Games

Our proof exploits the recursive structure of RUC games: after the first round, if the game doesn't end, the remaining game is identical to the original.

Paper

Published in conference FSTTCS 2023. [doi:10.4230/LIPIcs.FSTTCS.2023.18](https://doi.org/10.4230/LIPIcs.FSTTCS.2023.18)

