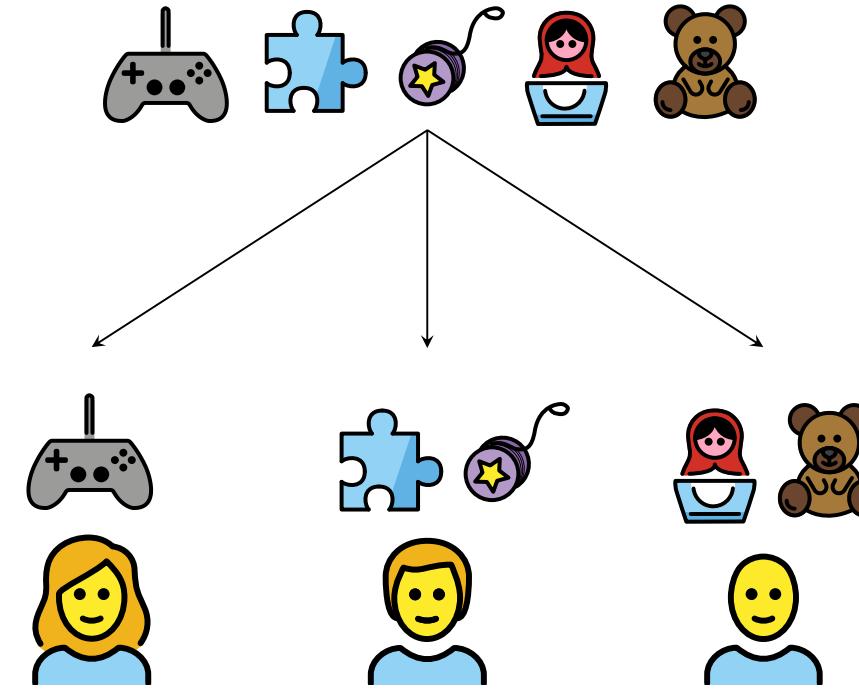


The Fair Division Problem

Distribute (indivisible) goods among agents *fairly*.



Input: n agents and a set M of m goods.

$v_i(g)$ is agent i 's value for good g .

For any $S \subseteq M$, let $v_i(S) := \sum_{g \in S} v_i(g)$.

		m				
		1	2	3	4	5
n	1	10	4	8	9	3
	2	5	3	3	8	2
	3	5	2	0	2	2

Output: an allocation $A = (A_1, \dots, A_n)$, where A_i is agent i 's bundle of goods.

$$A = (\{\text{teddy, bowl}\}, \{\text{star}\}, \{\text{game controller, puzzle}\})$$

Defining Fairness

Envy-freeness (EF): Agent i is envy-free in allocation A if for every $j \neq i$, we have $v_i(A_i) \geq v_i(A_j)$.

Proportionality (PROP): Allocation A is PROP-fair to agent i if $v_i(A_i) \geq v_i(M)/n$. $v_i(M)/n$ is called i 's PROP-share.

V	1	2	3	$\frac{v_i(M)}{n}$
4	2	6	6	
5	15	25	22.5	

Figure 1. An allocation that is both EF and PROP.

Theorem: If agent i is EF in allocation A , then A is PROP-fair to i .

EF or PROP allocations may not exist!

E.g., if $m = 1$.

Approximate Fairness

Even though we can't be exactly fair, we can be approximately fair.

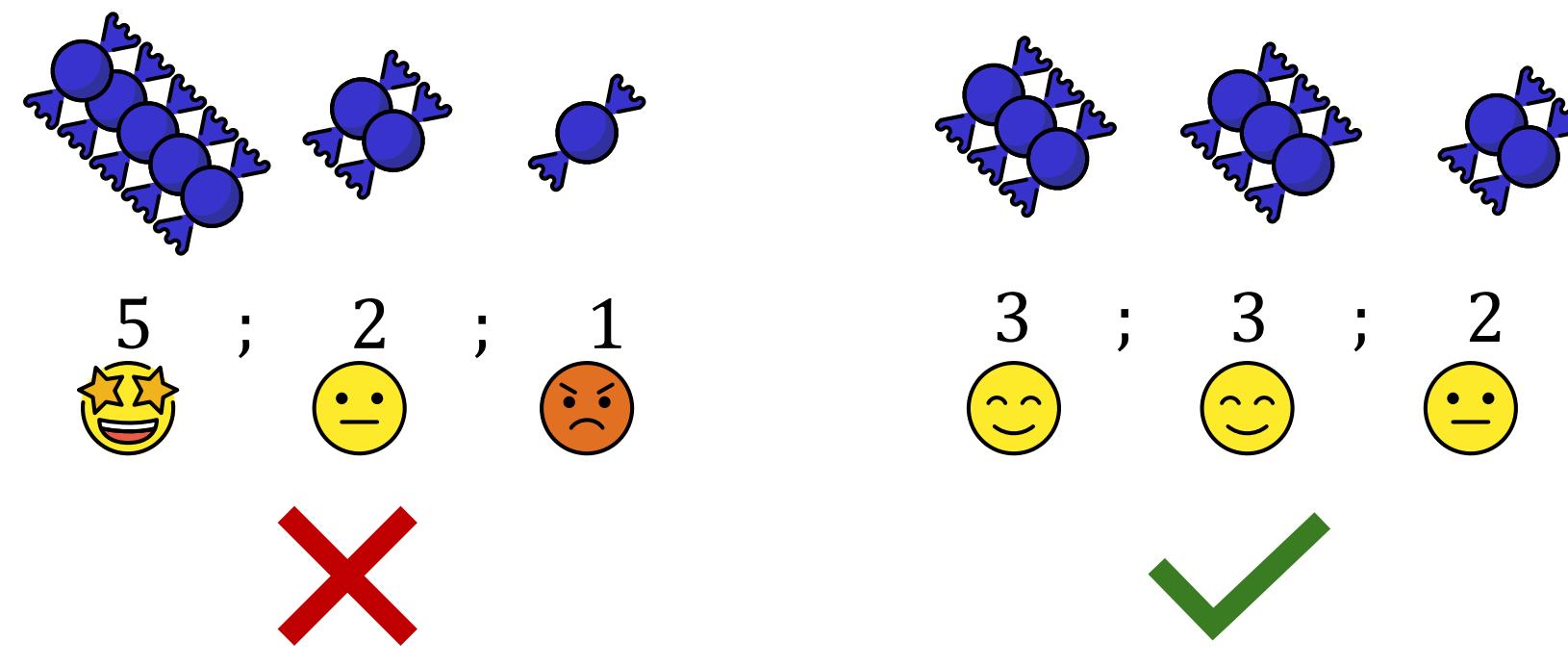


Figure 2. For $n = 3$ and $m = 8$, $(3, 3, 2)$ is fairer than $(5, 2, 1)$.

When goods are identical, each agent should get $\lfloor m/n \rfloor$ or $\lceil m/n \rceil$ goods. Equivalently, any two bundles should differ by at most 1 good. How do we generalize this?

Notions of (approximate) fairness of allocation A to agent i :

EFX: $\forall j \neq i, \forall g \in A_j, v_i(A_i) \geq v_i(A_j \setminus \{g\})$.

EF1: $\forall j \neq i$, either $A_j = \emptyset$ or $v_i(A_i) \geq v_i(A_j \setminus \{g\})$ for some $g \in A_j$.

MMS: $v_i(A_i) \geq \mu_i := \max_{(X_1, \dots, X_n)} \min_{j=1}^n v_i(X_j)$.

EEFX: \exists allocation B such that $B_i = A_i$ and B is EFX-fair to i .

For $n = 2$, EF = PROP and EFX = EEFX.

Allocation	EF1	EFX	MMS	EEFX
$(\{\text{house, bike}\}, \{\text{car}\})$	✓	✗	✗	✗
$(\{\text{house}\}, \{\text{car, bike}\})$	✓	✓	✓	✓

Figure 3. Example with $n = 2$ and $m = 3$.

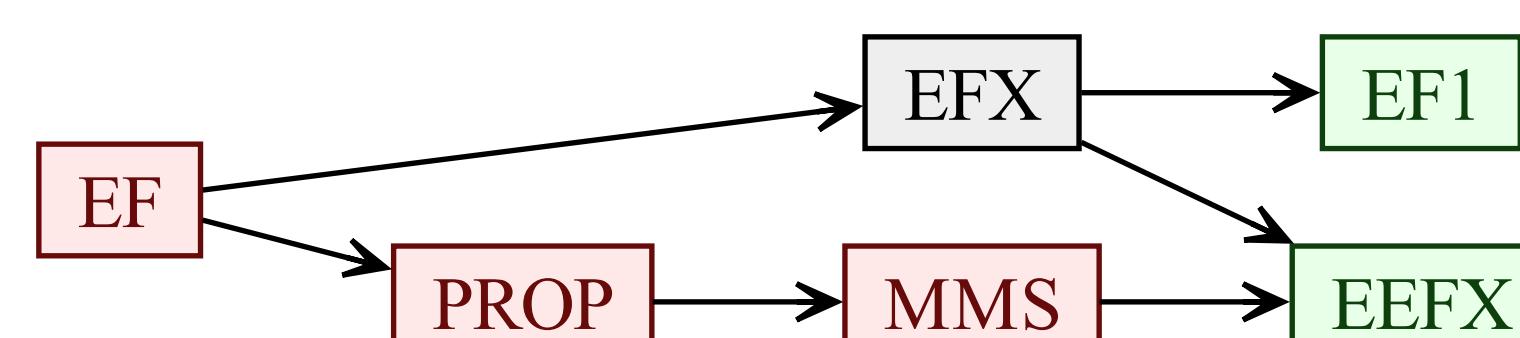


Figure 4. $F_1 \rightarrow F_2$ iff every F_1 -fair allocation is also F_2 -fair.

Key Problems

Feasibility: Does a fair allocation exist for every input?

Computability: Can we find a fair allocation in polynomial time if it exists?

Known Results

notion	feasible	computable
EFX	open	open
EF1	yes	polytime
EEFX	yes	polytime
MMS	no	NP-hard
3/4-MMS	yes	polytime

For $n = 2$, EFX is feasible and polytime computable.

Introducing Randomness

Using randomization, we can get EF and PROP **ex ante** (i.e., in expectation).

E.g., for 3 agents and 7 identical goods, we output one of $(3, 2, 2)$, $(2, 3, 2)$, and $(2, 2, 3)$ with probability $1/3$ each.

Notions of randomized fairness of allocation A to agent i :

ex ante EF: $\forall j \neq i, \mathbb{E}(v_i(A_i)) \geq \mathbb{E}(v_i(A_j))$.

ex ante PROP: $\mathbb{E}(v_i(A_i)) \geq v_i(M)/n$.

	ex post	ex ante
[2]	EF1	EF
[3]	1/2-MMS	PROP
[6]	EF1 + 1/2-EFX	1/2-EF
★[1]	3/4-MMS	0.8253-MMS

For $n = 2$, EFX + ex ante EF was known [6], but not in polytime. We give an $O(m \log m)$ -time algorithm [7]★.

References

- [1] H. Akrami, J. Garg, ★E. Sharma, and S. Taki. Improving approximation guarantees for maximin share. In EC, 2024.
- [2] H. Aziz, R. Freeman, N. Shah, and R. Vaish. Best of both worlds: Ex ante and ex post fairness in resource allocation. Operations Research, 2023.
- [3] M. Babaioff, T. Ezra, and U. Feige. On best-of-both-worlds fair-share allocations. In WINE, 2022.
- [4] I. Caragiannis, J. Garg, N. Rathi, ★E. Sharma, and G. Varricchio. New fairness concepts for allocating indivisible items. In IJCAI, 2023.
- [5] U. Feige, A. Sapir, and L. Tauber. A tight negative example for MMS fair allocations. In WINE, 2021.
- [6] M. Feldman, S. Maurus, V. V. Narayan, and T. Ponitka. Breaking the envy cycle: Best-of-both-worlds guarantees for subadditive valuations. In EC, 2024.
- [7] J. Garg and ★E. Sharma. Best-of-both-worlds fairness of the envy-cycle-elimination algorithm. arXiv:2410.08986, 2024.
- [8] J. Garg and S. Taki. An improved approximation algorithm for maximin shares. Artificial Intelligence, 2021.
- [9] R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. On approximately fair allocations of indivisible goods. In EC, 2004.