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Abstract. In single-winner elections where voters submit rankings over
candidates, distortion is a metric to evaluate voting rules using a utili-
tarian framework. I compare the distortion of the plurality voting rule
to the distortion of the optimal deterministic voting rule.
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1 Introduction

Consider a scenario where n agents want to pick an outcome from m
choices, and the agents may have different preferences. This happens in
many real-life scenarios:

1. Elections for selecting representatives of governing bodies.
2. Students in a course want to decide whether the final exam should be

take-home or in-class.
3. A group of friends want to decide where to go for their next road trip.
4. Coordination among multiple AI agents.

How do we pick an outcome from the m choices that aligns the most
with the agents’ preferences? We call this problem ‘single-winner election’.
Henceforth, we use election terminology, i.e., there are n voters who want
to elect a single winner from m candidates.

(I assume you are already familiar with the concept of distortion in
single-winner elections. In Sections 1.1 and 1.2, I give a brief description
of the problem statement to refresh your memory and establish nota-
tion. If you would like a more gentle introduction instead, please refer to
Section D.)

1.1 Utility and Welfare

For any non-negative integer t, let [t] := {1, 2, . . . , t}.
The jth voter has a utility function uj : [m] → R. Here uj(i) is a

number that tells us how much voter j likes candidate i. We normalize
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utilities by enforcing
∑m

i=1 uj(i) = 1. The list U := (u1, . . . , un) is called
the utility profile.

Each voter j has a weight wj ∈ R≥0. Every weighted voting instance
with rational weights can be mapped to an equivalent unweighted voting
instance. Given weights w ∈ [0, 1]n and utility profile U , the social welfare
of candidate i is defined as

SW(w,U)(i) :=

n∑
j=1

wjuj(i).

When w is clear from context, we write SWU instead of SW(w,U).

1.2 Ordinal Preferences and Distortion

Often, we cannot elicit exact numeric utilities from voters since it imposes
a cognitive and communication burden. Hence, voting systems often ask
voters to rank the candidates.

Therefore, instead of observing the utility profile U , we observe a
preference profile Π := (π1, π2, . . . , πm). Here πj : [m] → [m] is a bijection
where πj(i) is the jth voter’s ith favorite candidate. We say that utility
profile U is consistent with preference profile Π (denoted as U ▷ Π) if
for each voter j, we have uj(πj(1)) ≥ uj(πj(2)) ≥ . . . ≥ uj(πj(m)). We
receive as input the pair (w,Π) (called a ranked voting instance), where
w ∈ [0, 1]n is the vector of voters’ weights.

Our goal is to find a candidate whose social welfare is within a small
factor of the best social welfare achievable in each consistent utility profile.
This factor is called distortion. Formally, for input (w,Π), the distortion
of candidate i is defined as

∆(i, (w,Π)) := sup
U :U▷Π

max
i∗∈[m]

SW(w,U)(i
∗)

SW(w,U)(i)
.

Our aim is to find a candidate of low distortion.
We may also pick a candidate randomly, in which case we extend

the definition of distortion to distributions over candidates. Formally, let
p ∈ [0, 1]m be a vector such that

∑m
i=1 pi = 1. Suppose we pick candidate

i with probability pi for all i ∈ [m]. Then the expected value of our
chosen candidate’s social welfare is

∑m
i=1 pi SW(w,U)(i). Hence, we define

the distortion of p for the input (w,Π) as

∆(p, (w,Π)) := sup
U :U▷Π

max
i∗∈[m]

SW(w,U)(i
∗)∑

i∈[m]

pi SW(w,U)(i)
.
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An algorithm that takes input (w,Π) and outputs a candidate is called
a voting rule. The distortion of a (randomized) voting rule on (w,Π) is
the distortion of (the distribution of) the voting rule’s output on (w,Π).

Conventions to ensure that suprema of ratios are well-defined:

1. Define ∞ to be larger than any real number.
2. For any a > 0, let a/0 := ∞ and 0/0 := 0.
3. For f : X → R ∪ {∞}, if f(x) = ∞ for some x ∈ X, or if f is not

upper-bounded by a real-number, then supx∈X f(x) := ∞.

1.3 Known Results

The plurality score of candidate i is the total weight of voters whose
most-preferred candidate is i. The plurality voting rule outputs a plurality
winner, i.e, a candidate with the highest plurality score.

Theorem 1 (based on [3]). There is a ranked voting instance (w,Π)
with m candidates for which every candidate has distortion Ω(m2). For
any input, the plurality winner’s distortion is at most m2.

Theorem 2 ([2]). There is a ranked voting instance (w,Π) with m
candidates for which every distribution p has distortion at least

√
m/3.

There is a randomized voting rule having distortion at most O(
√
m log∗m)

for every input (where log∗m is the iterated logarithm of m).

Theorem 3 ([4]). There is a randomized voting rule whose distortion
is at most 2

√
m for every ranked voting instance with m candidates.

Theorem 4 (based on [2]). Given any ranked voting instance (w,Π)
with m candidates and n voters, we can find the distribution p that mini-
mizes the distortion by solving a linear program in O(nm2) variables and
O(nm2) constraints.

1.4 My Contributions

A cursory glance at Theorem 1 makes it seem that plurality achieves the
best distortion that any deterministic voting rule can achieve. However, a
closer looks reveals a caveat: there may exist inputs where some candidate
has low distortion but plurality still picks a candidate with high distortion.
This prompts the question: how good is plurality’s distortion compared
to the optimal deterministic distortion? I answer this question in the
following two theorems, which I prove in Section A.
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Theorem 5. For any ranked voting instance (w,Π) with m candidates,
let ip be the plurality winner, let β be her plurality score, and let ı̂ be some
other candidate. Then

∆(ip, (w,Π)) ≤ 1 +
m

2β
≤ 1 +

m2

2
, ∆(̂ı, (w,Π)) ≥ 1 +m.

When β ≥ 1/2, Theorem 5 implies that the plurality winner has the
least distortion. Moreover, we show that Theorem 5’s analysis is tight.

Theorem 6. For parameters m ∈ Z≥3, β ∈ ( 1
m , 12 ], and ε ∈ (0, β − 1

m ],
there is a ranked voting instance (w,Π) with m candidates such that all
of the following hold:

1. Candidate 1 is the unique plurality winner. Her plurality score is β.

2. ∆(1, (w,Π)) ≥ 1 + m
2β (1− ε).

3. ∆(m, (w,Π)) = 1 + m
1−ε/β .

When β → 1
m and ε → 0, Theorem 6 implies that ∆(1, (w,Π)) →

1 +m2/2 and ∆(m, (w,Π)) → 1 +m.

These results rely on a characterization of the utility profiles that
maximize the ratio of the social welfare of any two given candidates,
which I present in Section 2. A slight variation of this characterization
was independently discovered by [1] (Appendix D in their paper)1.

This characterization also helps us get a fast algorithm for computing
the distortion of any candidate in a ranked voting instance.

Theorem 7. Given a ranked voting instance (w,Π) with m candidates
and n voters, we can compute ∆(̂ı, (w,Π)) in O(mn) time for any can-
didate ı̂.

Moreover, to find the candidate with the optimal distortion, we can
just compute the distortion of each candidate and pick the best one. This
can be done in O(nm2) time.

2 Characterizing Worst-Case Utility Profiles

I define a class of utility profiles, called ruthless utility profiles, and show
that if a utility profile maximizes the ratio of the social welfares of any
two given candidates, then it must be ruthless.

1 I got scooped!
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Definition 1 (domination). In a ranked voting instance (w,Π), we
say that candidate i1 dominates candidate i2 if for every voter j with
positive weight, j prefers i1 over i2 (i.e., π−1

j (i1) < π−1
j (i2)).

Definition 2 (ruthlessness). Let (w,Π) be a ranked voting instance
with m candidates and let i∗ and ı̂ be any two candidates. A voter j is
called ‘ ruthless for (i∗, ı̂) in utility profile U ’ iff the following hold:

1. If i∗ is j’s kth-favorite candidate and she prefers i∗ over ı̂ (i.e., k :=
π−1
j (i∗) < π−1

j (̂ı)), then j has utility 1/k for her top-k candidates and
utility 0 for all other candidates (i.e., uj(πj(i)) = 1/k for all i ∈ [k]).

2. If j prefers ı̂ over i∗ and ı̂ is j’s kth-favorite candidate for k > 1 (i.e.,
1 < k := π−1

j (̂ı) < π−1
j (i∗)), then j has utility 0 for each candidate

that is not among her top k − 1 candidates (i.e., uj(πj(i)) = 0 for all
i ≥ k).

3. If ı̂ is j’s favorite candidate (i.e., π−1
j (̂ı) = 1), then uj(i) = 1/m for

all i ∈ [m].

A utility profile U is called ruthless for (i∗, ı̂) iff all voters of positive
weight are ruthless for (i∗, ı̂) in U .

Observation 8. For any ranked voting instance (w,Π) and any pair of
candidates (i∗, ı̂), a ruthless utility profile always exists. Furthermore, for
every utility profile U that is ruthless for (i∗, ı̂), we have U ▷ Π and
SWU (i

∗) ≥ SWU (̂ı).

Theorem 9. Let (w,Π) be a ranked voting instance. Let i∗ and ı̂ be two
candidates such that ı̂ doesn’t dominate i∗. Let U be the set of all utility
profiles consistent with Π. For any utility profile U , define

f(U) :=
SW(w,U)(i

∗)

SW(w,U)(̂ı)
.

Then the set of ruthless utility profiles for (i∗, ı̂) is exactly the set of
maximizers of f over U . Formally, for any utility profile Û , we have
f(Û) = supU▷Π f(U) iff Û is ruthless for (i∗, ı̂).

I prove Theorem 9 in Section B. Now let us see how Theorem 9 helps
us get a fast algorithm for computing the distortion for any candidate.

Theorem 7. Given a ranked voting instance (w,Π) with m candidates
and n voters, we can compute ∆(̂ı, (w,Π)) in O(mn) time for any can-
didate ı̂.
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Proof. ı̂ dominates all other candidates iff ı̂’s plurality score is 1. We can
check this in O(n) time. If ı̂ dominates everyone else, then ∆(̂ı, (w,Π)) =
1 (since SWU (̂ı) ≥ SWU (i) for all i ∈ [m] and all U ▷ Π).

In O(mn) time, we can compute π−1
j for all j ∈ [n]. ı̂ dominates i iff

π−1
j (̂ı) < π−1

j (i) for all j. We can check this in O(n) time.
Let C be the candidates in [m] \ {̂ı} not dominated by ı̂. Then

∆(̂ı, (w,Π)) = sup
U :U▷Π

max
i∈[m]

SWU (i)

SWU (̂ı)

= max

(
1,max

i∈C
sup

U :U▷Π

SWU (i)

SWU (̂ı)

)
.

We can compute each of these |C| suprema in O(n) time using Theorem 9
and Definition 2. Hence, we can compute ∆(i, (w,Π)) in O(mn) time.

3 Open Problems

Although known works have characterized the worst-case distortion of
(both deterministic and randomized) voting rules asymptotically as a
function of the number of candidates m, it remains to be seen if we can
get an exact bound on the distortion in terms of m. This is especially
relevant when m is small, which is often the case.

In Section C, I explore the case m = 2, and show the following

1. The distortion of plurality is at most 3, and there is an instance for
which no deterministic voting rule can get distortion better than 3.

2. There is a randomized voting rule having distortion at most 3/2, and
there is an instance for which no randomized voting rule can get dis-
tortion better than 3/2.
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A The Distortion of Plurality

We first prove upper and lower bounds on the distortion of a candidate
using Theorem 9.

Lemma 1. Consider a ranked voting instance (w,Π) with m candidates.
For any i ∈ [m], let Hi be the set of voters who have candidate i as their
first preference, and let hi be the total weight of voters in Hi. Then for
any two candidates i∗ and ı̂ such that ı̂ doesn’t dominate i∗,

1 +
mhi∗

hı̂
≤ sup

U :U▷Π

SW(w,U)(i
∗)

SW(w,U)(̂ı)
≤ 1 +

m

2

(
1 + hi∗

hı̂
− 1

)
.

Proof. By Theorem 9, the sup is achieved by a utility profile Û that is
ruthless for (i∗, ı̂). Hence,

1. ∀j ∈ Hi∗ , ûj(i
∗) = 1 and ûj (̂ı) = 0.

2. ∀j ∈ Hı̂, ûj(i
∗) = ûj (̂ı) = 1/m.

3. ∀j ∈ [m] \ (Hi∗ ∪Hı̂), ûj (̂ı) = 0 and ûj(i
∗) ∈ [0, 1/2].

Hence, SW
Û
(̂ı) = hı̂/m and

SW
Û
(i∗) ∈

[
hi∗ +

hı̂
m
,hi∗ +

hı̂
m

+ (1− hi∗ − hı̂)
1

2

]
=

[
hi∗ +

hı̂
m
,
hı̂
m

+
1 + hi∗ − hı̂

2

]
.

Hence,
SW

Û
(i∗)

SW
Û
(̂ı)

∈
[
1 +

mhi∗

hı̂
, 1 +

m

2

(
1 + hi∗

hı̂
− 1

)]
. □

Lemma 2. Consider a ranked voting instance (w,Π) with m candidates.
For any i ∈ [m], let hi be the plurality score of candidate i. Let i∗ :=
argmaxi∈[m]\{̂ı} hi. Then for any candidate ı̂, we get

1 +
mhi∗

hı̂
≤ ∆(̂ı, (w,Π)) ≤ 1 +

m

2

(
1 + hi∗

hı̂
− 1

)
.

Proof. If ı̂ dominates everyone else, then hı̂ = 1, hi∗ = 0, and∆(̂ı, (w,Π)) =
1 (since SWU (̂ı) ≥ SWU (i) for all i ∈ [m] and all U ▷ Π). Hence, the
lemma holds trivially.
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Let C be the set of candidates in [m] \ {̂ı} not dominated by ı̂. Then
C ̸= ∅ =⇒ hı̂ < 1 =⇒ hi∗ > 0 =⇒ i∗ ∈ C.

∆(̂ı, (w,Π)) = sup
U :U▷Π

max
i∈[m]

SWU (i)

SWU (̂ı)

= max

(
1,max

i∈C
sup

U :U▷Π

SWU (i)

SWU (̂ı)

)
∈
[
max
i∈C

(
1 +

mhi
hı̂

)
,max
i∈C

(
1 +

m

2

(
1 + hi
hı̂

− 1

))]
(by Lemma 1)

=

[
1 +

mhi∗

hı̂
, 1 +

m

2

(
1 + hi∗

hı̂
− 1

)]
. □

Theorem 5. For any ranked voting instance (w,Π) with m candidates,
let ip be the plurality winner, let β be her plurality score, and let ı̂ be some
other candidate. Then

∆(ip, (w,Π)) ≤ 1 +
m

2β
≤ 1 +

m2

2
, ∆(̂ı, (w,Π)) ≥ 1 +m.

Proof. Let iq be the candidate with the second highest plurality score,
and let her plurality score be γ. Then γ ≤ β and β ≥ 1/m. Hence, by
Lemma 2, we get

∆(ip, (w,Π)) ≤ 1 +
m

2

(
1 + γ

β
− 1

)
≤ 1 +

m

2β
≤ 1 +

m2

2
.

∆(̂ı, (w,Π)) ≥ 1 +
mβ

γ
≥ 1 +m. □

We now show that Theorem 5’s analysis is tight by considering a
specific ranked voting instance.

Example 1. Let (w,Π) be a ranked voting instance with m candidates
and m voters where voter j’s first preference is j and the remaining can-
didates are ranked in descending order. Formally, for all j ∈ [m], we have
πj(1) = j and for all i1, i2 ∈ [m] \ {j}, we have π−1

j (i1) < π−1
j (i2) iff

i1 > i2.

Theorem 6. For parameters m ∈ Z≥3, β ∈ ( 1
m , 12 ], and ε ∈ (0, β − 1

m ],
there is a ranked voting instance (w,Π) with m candidates such that all
of the following hold:
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1. Candidate 1 is the unique plurality winner. Her plurality score is β.
2. ∆(1, (w,Π)) ≥ 1 + m

2β (1− ε).
3. ∆(m, (w,Π)) = 1 + m

1−ε/β .

Proof. In Example 1, set w1 = β, wm = β−ε, δ := (1−w1−wm)/(m−2),
and wi = δ for all i ∈ [m − 1] \ {1}. Then wm ≥ 1/m and 0 < δ < 1/m.
Hence, candidate 1 is the unique plurality winner and her plurality score
is β. Also, every candidate has a positive plurality score, so no candidate
dominates any other candidate.

Using Theorem 9, we get

∆(m, (w,Π)) =
m

max
i=1

sup
U :U▷Π

SWU (i)

SWU (m)
=

m
max
i=1

(
1 +

mwi

wm

)
= 1 +

mβ

β − ε
.

∆(1, (w,Π)) ≥ sup
U :U▷Π

SWU (m)

SWU (1)

= 1 +
m

w1

(
wm +

(m− 2)δ

2

)
= 1 +

m

2β
(1− ε). □

B Proof of Theorem 9

Theorem 9. Let (w,Π) be a ranked voting instance. Let i∗ and ı̂ be two
candidates such that ı̂ doesn’t dominate i∗. Let U be the set of all utility
profiles consistent with Π. For any utility profile U , define

f(U) :=
SW(w,U)(i

∗)

SW(w,U)(̂ı)
.

Then the set of ruthless utility profiles for (i∗, ı̂) is exactly the set of
maximizers of f over U . Formally, for any utility profile Û , we have
f(Û) = supU▷Π f(U) iff Û is ruthless for (i∗, ı̂).

Assume without loss of generality that wj > 0 for each voter j ∈ [n].

Observation 14. If U1 and U2 are ruthless utility profiles for (i∗, ı̂), then
SWU1(i) = SWU2(i) for all i ∈ {i∗, ı̂}, so f(U1) = f(U2). Hence, either
all ruthless profiles are maximizers of f , or none of them are.

Let Û := (û1, . . . , ûn) be any ruthless utility profile. Since ı̂ doesn’t
dominate i∗, for some voter ℓ ∈ [n], we get ûℓ(i

∗) > 0. Hence, SW
Û
(i∗) >

0. If SW
Û
(̂ı) = 0, then f(Û) = ∞, so we are done. Now assume SW

Û
(̂ı) >
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0. Then f(Û) ̸= ∞. Now it is enough to prove that f attains a finite
maximum in U , and the maximum is ruthless.

Since SW
Û
(̂ı) > 0, some voter j must have ûj (̂ı) > 0. This can happen

iff ı̂ is j’s favorite candidate. Let U := {U : U ▷ Π}. Then for any utility
profile U ∈ U , we have

SWU (̂ı) ≥ wjuj (̂ı) = wj
m

max
i=1

uj(i) ≥
wj

m

m∑
i=1

uj(i) =
wj

m
> 0.

SWU (̂ı) and SWU (i
∗) are linear in U , and hence, they are continuous

functions. Since SWU (̂ı) > 0 for all U ∈ U , and the ratio of continuous
functions is continuous, we get that f is continuous in U . U is a bounded
polyhedron, since U ⊆ [0, 1]n×m and the constraint U ▷ Π can be rep-
resented using O(mn) linear constraints. Hence, by Weierstrass’ extreme
value theorem, we get that f attains a real-valued maximum on U .

Let U∗ := (u∗1, . . . , u
∗
n) ∈ U be a maximum of f . We now use the local

optimality of U∗ to show that U∗ must be ruthless. We do this using a
case analysis over different types of voters.

Lemma 3. If a voter j prefers i∗ over ı̂ (i.e., π−1
j (i∗) < π−1

j (̂ı)), then j
is ruthless for (i∗, ı̂) in U∗.

Proof. Let Û be a ruthless utility profile. Suppose i∗ is the kth-favorite
candidate of voter j. Let Ũ be a utility profile where ũj := ûj and ũt := u∗t
for all t ∈ [n] \ {j}. Then u∗j (i

∗) ≤ 1/k, ũj(i
∗) = 1/k, and ũj (̂ı) = 0. Then

SW
Ũ
(i∗) ≥ SWU∗(i∗) and SW

Ũ
(̂ı) < SWU∗ (̂ı). Hence, f(Ũ) ≥ f(U∗).

Moreover, if u∗j (̂ı) > 0 or u∗j (i
∗) < 1/k, then f(Ũ) > f(U∗), which is a

contradiction, since U∗ maximizes f . Hence, u∗j (̂ı) = 0 and u∗j (i
∗) = 1/k,

which implies that j is ruthless in U∗. ⊓⊔

Lemma 4. If a voter j prefers ı̂ over i∗ (i.e., π−1
j (̂ı) < π−1

j (i∗)), then
u∗j (̂ı) = u∗j (i

∗).

Proof. Assume u∗j (̂ı) ̸= u∗j (i
∗). Let K be the candidates who j prefers

at least as much as i∗ and at most as much as ı̂, i.e., K := {i ∈ [m] :
π−1
j (̂ı) ≤ π−1

j (i) ≤ π−1
j (i∗)}. Note that ı̂, i∗ ∈ K. Let α be the average

utility for candidates in K, i.e.,

α :=
1

|K|
∑
i∈K

u∗j (i).

Let Ũ be a utility profile where ũj(i) := α for i ∈ K, and ũj(i) := u∗j (i)

if i ̸∈ K, and ũt := u∗t for t ∈ [n] \ {j}. Then Ũ ∈ U . Furthermore, we
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have u∗j (̂ı) > α > u∗j (i
∗). Hence, SW

Ũ
(̂ı) < SWU∗ (̂ı) and SW

Ũ
(i∗) >

SWU∗(i∗), so f(Ũ) > f(U∗). This is a contradiction, since U∗ maximizes
f over U . Hence, u∗j (̂ı) = u∗j (i

∗). ⊓⊔

Lemma 5. SWU∗(i∗) > SWU∗ (̂ı).

Proof. Since ı̂ doesn’t dominate i∗, there is a voter ℓ ∈ [n] who prefers i∗

over ı̂. Hence, by Lemma 3, we get u∗ℓ (i
∗) > u∗ℓ (̂ı) = 0. By Lemmas 3 and 4,

we get u∗j (i
∗) ≥ u∗j (̂ı) for every voter j. Hence, SWU∗(i∗) > SWU∗ (̂ı). ⊓⊔

Lemma 6. If a voter j prefers ı̂ over i∗ (i.e., π−1
j (̂ı) < π−1

j (i∗)), then j
is ruthless for (i∗, ı̂) in U∗.

Proof. Let α := u∗j (i
∗) = u∗j (̂ı) (by Lemma 4). Suppose there is a utility

profile Ũ where ũt = u∗t for all t ∈ [n] \ {j}. We will decide how exactly
to set ũj later. For now, we only impose the conditions Ũ ▷ Π and
ũj (̂ı) = ũj(i

∗) = x for some real number x whose value we will decide
later. Then SW

Ũ
(i) = SWU∗(i) + wj(x− α) for i ∈ {i∗, ı̂}. Hence,

f(Ũ) =
SWU∗(i∗) + wj(x− α)

SWU∗ (̂ı) + wj(x− α)
= 1 +

SWU∗(i∗)− SWU∗ (̂ı)

(SWU∗ (̂ı)− wjα) + wjx
.

Since ı̂ doesn’t dominate i∗, there is a voter ℓ ∈ [n] who prefers i∗ over ı̂.
Hence, by Lemma 3, we get SWU∗ (̂ı)− wjα ≥ u∗ℓ (i

∗) > 0. By Lemma 5,

f(Ũ) is a strictly decreasing function of x. If we set ũj = u∗j , we get

Ũ = U∗ and x = α. On the other hand, if we set ũj such that x < α,

then we get f(Ũ) > f(U∗). This contradicts the maximality of U∗ for f .
Hence, α ≤ x.

Suppose ı̂ is the kth-favorite candidate of voter j. We have two cases.
Case 1: k = 1:
Then α = u∗j (̂ı) ≥ 1/m. Set ũj(i) = 1/m for all i. Hence, α ≤ x = 1/m.
Hence, α = 1/m. Hence, u∗j (i) = 1/m for all i ∈ [m].
Case 2: k > 1: Set ũj(πj(1)) = 1 and ũj(i) = 0 for all other i. Then
x = 0, so α = 0. Hence, u∗j (πj(i)) = 0 for all i ≥ k.

In both cases, we see that voter j is ruthless for (i∗, ı̂) in U∗. ⊓⊔

Lemmas 3 and 6 imply that U∗ is ruthless for (i∗, ı̂), which completes
the proof of Theorem 9.

C Two Candidates

Consider a ranked voting instance (w,Π) with 2 candidates. We can as-
sume without loss of generality that n = 2 and πi(1) = i for i ∈ [2].
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Lemma 7. Let p ∈ [0, 1]2 such that p1 + p2 = 1. Then

∆(p, (w,Π))−1 = min
i∈[2]

(
pi + (1− pi)

1− wi

1 + wi

)
= min

(
1− w1

1 + w1
+

2w1

1 + w1
p1, 1−

2− 2w1

2− w1
p1

)
.

Proof. For any utility profile U , we have SWU (1) + SWU (2) = 1.

∆(p, (w,Π))−1 = inf
U :U▷Π

∑
i∈[2] pi SWU (i)

maxi∈[2] SWU (i)

= min
i∈[2]

inf
U :U▷Π

∑
j∈[2] pj SWU (j)

SWU (i)

= min
i∈[2]

inf
U :U▷Π

pi SWU (i) + (1− pi)(1− SWU (i))

SWU (i)

= min
i∈[2]

inf
U :U▷Π

(
pi + (1− pi)

(
1

SWU (i)
− 1

))
= min

i∈[2]

(
pi + (1− pi)

(
1

supU :U▷Π SWU (i)
− 1

))
.

For i ∈ [2] and U ▷ Π, we have ui(i) ∈ [1/2, 1] and u3−i(i) ∈ [0, 1/2].
Hence,

sup
U :U▷Π

SWU (i) = sup
U▷Π

(wiui(i) + (1− wi)u3−i(i))

= wi + (1− wi)
1

2
=

1 + wi

2
.

Hence,

∆(p, (w,Π))−1 = min
i∈[2]

(
pi + (1− pi)

(
2

1 + wi
− 1

))
= min

(
p1 + (1− p1)

1− w1

1 + w1
, (1− p1) + p1

w1

2− w1

)
= min

(
1− w1

1 + w1
+

2w1

1 + w1
p1, 1−

2− 2w1

2− w1
p1

)
. □

Corollary 1. For any i ∈ [2], we get ∆(i, (w,Π)) = 2/wi − 1.

Corollary 1 tells us that the plurality winner achieves optimal deter-
ministic distortion. Since the plurality winner has weight at least 1/2, her
distortion must be at most 3. Moreover, for w1 = w2 = 1/2, we get that
both candidates have distortion 3.
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Lemma 8. The optimal randomized distortion is achieved by p∗ ∈ [0, 1]2,
where

p∗1 =
w1(2− w1)

1 + 2w1w2
, ∆(p∗, (w,Π)) = 1 + 2w1w2.

Proof. By Lemma 7, we get

∆(p, (w,Π))−1 = min

(
1− w1

1 + w1
+

2w1

1 + w1
p1, 1−

2− 2w1

2− w1
p1

)
.

To minimize distortion, we need to maximize ∆(p, (w,Π))−1, which is the
minimum of an increasing function and a decreasing function of p1. Let
us compute their point of intersection.

1− w1

1 + w1
+

2w1

1 + w1
p1 = 1− 2− 2w1

2− w1
p1

⇐⇒ p1

(
2w1

1 + w1
+

2(1− w1)

2− w1

)
= 1− 1− w1

1 + w1

⇐⇒ 2p1
1 + 2w1w2

(1 + w1)(2− w1)
=

2w1

1 + w1

⇐⇒ p1 =
w1(2− w1)

1 + 2w1w2
.

Since (1+2w1w2)−w1(2−w1) = 1−w2
1 ≥ 0, we get that p1 ∈ [0, 1]. Hence,

∆(p, (w,Π))−1 is maximized at p1 = w1(2− w1)/(2 + w1w2). Moreover,

∆(p, (w,Π))−1 =
1− w1

1 + w1
+

2w1

1 + w1

w1(2− w1)

1 + 2w1(1− w1)
=

1

1 + 2w1w2
. □

By Lemma 8, the optimal randomized distortion is at most 1+2w1(1−
w1) ≤ 3/2. This bound is tight for w1 = w2 = 1/2.

D Introduction to Distortion

We consider the single-winner election problem, i.e., n voters want to
elect a single winner from m candidates. For any non-negative integer t,
let [t] := {1, 2, . . . , t}.

D.1 Utility and Welfare

We can take a utilitarian approach to the single-winner election problem:
assume the jth voter has a utility function uj : [m] → R. Here uj(i) is
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a number that tells us how much voter j likes candidate i, or how much
voter j benefits from candidate i’s election.

Each voter j has a weight wj ∈ R≥0 which is a measure of the im-
portance of voter j compared to the other voters. Assume without loss
of generality that

∑n
j=1wj = 1. Usually we assume that all voters are

equal (called unweighted voting), and so their weights are the same, but
there are situations where we may want to use weighted voting, e.g., when
stakeholders of a company want to make a joint decision, they may want
to give more weight to voters with higher stake in the company.

Studying weighted voting also gives us insight into unweighted voting.
This is because if all the weights are rational, and each voter j has weight
nj/D for nj ∈ Z, then we can replace each voter j with nj clones of that
voter, each having weight 1/D to get an equivalent unweighted voting
instance. Since Q is dense in R, having rational weights is not a restrictive
assumption.

Any single-winner election can be fully described by the pair (w,U),
where w ∈ [0, 1]n is the vector of voters’ weights and U is the voters’
utility profile, i.e., U is a list (u1, u2, . . . , un), where uj : [m] → R is voter
j’s utility function. We often represent U as an n-by-m matrix of real
numbers, where the entry in the jth row and ith column is uj(i).

In a utility profile U on m candidates, the social welfare of candidate
i is defined as

SW(w,U)(i) :=
n∑

j=1

wjuj(i).

When w is clear from context, we write SWU instead of SW(w,U). Intu-
itively, SWU (i) is the net gain to society if candidate i is elected as winner.
Hence, a natural objective is to elect the candidate who maximizes the so-
cial welfare, known as the social-welfare-optimal (SWO) candidate. Given
(w,U) as input, finding the SWO candidate is trivial and can be done in
Θ(mn) time.

Often, we constrain voters’ utility functions in some way to ensure
that they can’t freely scale them up to increase their relative importance.
In this document, we consider normalized utilities, i.e., utility functions
u : [m] → R where u(i) ≥ 0 for all i ∈ [m] and

∑m
i=1 u(i) = 1. (Other

classes of utility functions are also commonly studied, like unit-range
functions, binary functions, and metric utilities.)
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D.2 Ordinal Preferences and Distortion

In most real-world scenarios, it is hard for voters to accurately convey
their utilities exactly (based on studies in behavioral economics and psy-
chology) (I don’t have direct citations for this, but [2] claim this in their
paper). On the other hand, it’s easy for voters to compare candidates to
each other. Hence, voting systems often ask voters to rank the candidates.

Therefore, instead of observing the utility profile U , we observe a
preference profile Π := (π1, π2, . . . , πm). Here πj : [m] → [m] is a bijection
where πj(i) is the jth voter’s ith favorite candidate. We often represent
Π as an n-by-m matrix, where the jth row and ith column is πj(i). We
say that utility profile U is consistent with preference profile Π (denoted
as U ▷ Π) if for each voter j, we have uj(πj(1)) ≥ uj(πj(2)) ≥ . . . ≥
uj(πj(m)).

We receive as input the pair (w,Π) (called a ranked voting instance),
where w ∈ [0, 1]n is the vector of voters’ weights. The voters’ utility profile
U (which is consistent with Π) is hidden from us. We would like to pick a
candidate i such that SW(w,U)(i) is maximized. However, as the following
example shows, finding the SWO candidate is impossible without knowing
U .

Example 2. Consider a ranked voting instance (w,Π), where w1 = w2 =
1/2 and Π = ( 1 2

2 1 ) (i.e., 2 voters and 2 candidates, voter 1 prefers can-
didate 1, voter 2 prefers candidate 2). Consider utility profiles U1 and
U2:

U1 :=

(
1
2 + ε 1

2 − ε
0 1

)
U2 :=

(
1 0

1
2 − ε 1

2 + ε

)
.

Here 0 < ε ≪ 1/2. Then both U1 and U2 are consistent with Π and
SWU1(1) = SWU2(2) = (1+2ε)/4 and SWU1(2) = SWU2(1) = (3−2ε)/4.
Hence, whichever candidate we pick, there is a consistent utility profile
for which the candidate we picked has social welfare ≈ 1/4 and the other
candidate has social welfare ≈ 3/4.

Since finding the SWO candidate is impossible without knowing U ,
we try finding a candidate whose social welfare is within a small factor
of the SWO candidate’s social welfare for all consistent utility profiles.
This factor is called distortion. Formally, for input (w,Π), the distortion
of candidate i is defined as

∆(i, (w,Π)) := sup
U :U▷Π

max
i∗∈[m]

SW(w,U)(i
∗)

SW(w,U)(i)
.
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Our aim is to find a candidate of low distortion.
We may also pick a candidate randomly, in which case we extend

the definition of distortion to distributions over candidates. Formally, let
p ∈ [0, 1]m be a vector such that

∑m
i=1 pi = 1. Suppose we pick candidate

i with probability pi for all i ∈ [m]. Then the expected value of our
chosen candidate’s social welfare is

∑m
i=1 pi SW(w,U)(i). Hence, we define

the distortion of p for the input (w,Π) as

∆(p, (w,Π)) := sup
U :U▷Π

max
i∗∈[m]

SW(w,U)(i
∗)∑

i∈[m]

pi SW(w,U)(i)
.

An algorithm that takes input (w,Π) and outputs a candidate is called
a voting rule. The distortion of a (randomized) voting rule on (w,Π) is
the distortion of (the distribution of) the voting rule’s output on (w,Π).

Conventions to ensure that suprema of ratios are well-defined:

1. Define ∞ to be larger than any real number.
2. For any a > 0, let a/0 := ∞ and 0/0 := 0.
3. For f : X → R ∪ {∞}, if f(x) = ∞ for some x ∈ X, or if f is not

upper-bounded by a real-number, then supx∈X f(x) := ∞.
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