ML Assignment 2 - Final Report

Group 03: Eklavya Sharma, Anirudh Kumar Bansal
November 27, 2017

Abstract

We explore apprenticeship learning in this project. Apprenticeship
learning is a process where an intelligent agent learns by first observing
an expert and then trying out the task on its own. We devise an
apprenticeship variant of the Deep Q-learning algorithm. We then
test our solution on the OpenAl game ‘CartPole’. Unfortunately, our
algorithm fails to learn from expert human gameplay.

1 Introduction

1.1 Apprenticeship Learning

Reinforcement learning is a branch of machine learning where an intelligent
agent learns from the environment by taking actions based on the current
state and then observing rewards and change in state.

An intelligent agent is an entity which has the capability to observe the
state of the environment. and the agent is required to take an action at every
time instant. For every action, the agent receives a reward. A policy is a
function which maps a state to an action. The goal of the agent is to learn
a policy m such that on following that policy the agent is able to maximize
its rewards.

When the agent interacts with the environment, it observes tuples of the
form (s1,a,r, s2). This means that taking action a in state s; gives a reward
r and changes the environment’s state to s;. A collection of such tuples
constitutes ‘experience’. In reinforcement learning, an agent uses a mixture
of trial-and-error and experience to interact with its environment. This gives
the agent more experience which helps it refine its policy.

When the intelligent agent interacts with the environment for the first
time, it has no experience and must rely solely on hit-and-trial to gain ex-

perience. This can make it difficult for the agent to quickly learn a good
policy.

In apprenticeship learning, an agent first observes an expert perform a
task. It observes what actions the expert takes, how that affects the environ-
ment and what reward the expert receives. This technique therefore helps
the agent get experience from the expert. The agent can then use this ex-
perience as a starting point and begin refining its policy from there onwards
instead of starting from scratch.

Apprenticeship learning is different from supervised learning. The agent
doesn’t learn a policy only by looking at expert actions. It also refines the
policy by itself interacting with the environment after observing the expert.

Apprenticeship learning therefore has 2 parts — observation and practice.
Observation involves observing an expert, while practice involves learning by
interacting with the environment on one’s own.

1.2 Deep Q-Learning

Q-learning is a reinforcement learning algorithm in which the agent learns
a Q-function. Q(s,a) represents the expected discounted reward which the
agent can obtain if it starts from state s and the first action it takes is a.

In deep Q-learning, the agent uses a deep neural network to learn the Q
function. Such a neural network is called a ‘Deep Q network’ (DQN).

A successful variant of Q-learning uses an ‘experience replay mechanism’
to learn the Q-function [1]. It was the first algorithm which outperformed
humans in Atari video games and only used raw images as input. This is the
algorithm we use as the basis of our apprenticeship learning variant.

In this project, we compare reinforcement learning and apprenticeship
learning based on their performance in 2 games.

2 Deep Q-Learning with Apprenticeship

First, expert human gameplay is recorded for several episodes. Gameplay is
stored as a list of tuples of the form (sy,a,r, s2,d). Each such tuples means
that the environment changed from state s; to state sy when action a was
taken and reward r was received. d is a boolean which indicates whether sq
is an absorbing state.

In our variant, before the agent is made to interact with the world, tu-
ples from the expert gameplay are added to the agent’s experience memory
and its Q-network is updated using experience replay after every episode.
This means that when the agent begins interacting with the environment,

it doesn’t start with an empty experience memory and it doesn’t start with
randomly-assigned weights in the Q-network.

3 Implementation

The agent was tested the ‘CartPole-v1’ environment from the OpenAl gym.
CartPole’s state consists of 4 real-numbers and it has 2 possible actions.

10 episodes of observation was generated for CartPole by Eklavya. A
CartPole episode runs for approximately 25 seconds.

The deep Q-network uses the multi-layered perceptron network. It has
‘relu’ as activation in the hidden-layer and has no activation for the output
layer. The hidden layers have sizes 12, 16 and 12 respectively.

The discount () is set to 0.95. This parameter measures the ratio by
which future rewards should be discounted when computing the 'future dis-
counted reward’ for the Q-value at a particular state and action. Experience
memory size is 10000 and batch size for experience replay is 64. The agent
chooses a random action with probability € and chooses the action with the
highest Q otherwise. € is initially set to 0.1 and gets multiplied by 0.995 after
each episode. The minimum value of € is set to 0.02.

The network is trained using the Adam algorithm. The learning rate
for the Adam algorithm is set to 0.01 and the learning decay rate over each
parameter is also set to 0.01.

4 Results

A bot was trained 15 times — 5 times with no observation episodes and 1000
practice episodes, 5 times with only 500 observation episodes and no practice
and 5 times with 500 observation episodes and 1000 practice episodes. Since
expert gameplay data was scarce, the 10 recorded episodes were fed to the
agent 50 times. After training, the agent is tested on 10 episodes.

The score for each practice episode was plotted. There is a lot of fluc-
tuation in the score but it increased in general with practice episodes and
after a point stops increasing. The agent performs okay with no observa-
tion episodes but performs poorly with observation episodes, regardless of
whether it practiced. The practice episodes seem to mislead the agent in-
stead of helping it.

https://gym.openai.com/envs/CartPole-v1/
https://gym.openai.com/envs/

200

100

Table 1: CartPole Test Scores

Sno | Pure Observation | Pure Practice | Mixed
1 -0.7 163.1 -0.2
2 -1.1 230.8 -0.5
3 -0.9 109.2 -0.7
4 -0.1 126.6 -0.7
5 -0.3 130.1 -0.5
mean -0.62 151.96 -0.52

200 400

600

800

Figure 1: Scores in practice episodes (Pure Practice)

150

125

100

75

50

25

0 200 400 600 800 1000

Figure 2: Average scores in sets of 20 practice episodes (Pure Practice)

5 Conclusion

We explored a learning method where experience is used to learn an initial
Q function, which is then improved by an agent. This method, however,
failed to produce good results. Apart from it being a bad learning tech-
nique, there could be several reasons why it didn’t work. Expert gameplay
data was limited. It’s also possible that the neural network architecture was
inappropriate.

Another reason could be that the way humans play a game might be very
different from the way a computer might play it. Perhaps Deep Q-networks
cannot be complex enough to understand human policies and require less
data at the same time. A human policy will therefore mislead it instead of
helping it.

References
[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis

Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with
deep reinforcement learning. CoRR, abs/1312.5602, 2013.

	Introduction
	Apprenticeship Learning
	Deep Q-Learning

	Deep Q-Learning with Apprenticeship
	Implementation
	Results
	Conclusion

