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Abstract

I propose a fuzzy clustering algorithm - CT-means. It is similar to
C-means, but is faster when number of dimensions is low and number
of clusters is high. This improvement in speed is achieved by using
data structures which support nearest neighbor queries, like KD-trees.
The algorithm creates c clusters where membership value of a point
is non-zero in t clusters closest to it and zero in all other clusters.
CT-means is therefore a generalization of the K-means (t = 1) and
C-means (t = c) algorithms. I also discuss methods for choosing
an appropriate value for t. Generally, a point’s membership value is
significant only for a few clusters close to it. If we set t to the number
of significant clusters, we can get results very similar to fuzzy C-means
clustering with a reduced running time.
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1 Introduction

1.1 Fuzzy clustering vs Hard clustering

Clustering is a problem where n objects have to be assigned to clusters such
that similar objects belong to the same cluster and different objects belong
to different clusters.

A hard clustering algorithm takes n points and assigns them to c clusters.
Each point belongs to one and only one cluster. A hard clustering algorithm
therefore outputs a membership array and coordinates of the centroids. The
ith element of the membership array is the cluster to which the ith point
belongs to.

A fuzzy clustering algorithm, on the other hand, can assign a point to
multiple clusters. Each point belongs to every cluster with a certain member-
ship degree. A fuzzy clustering algorithm therefore outputs a membership
matrix instead of a membership array. The membership matrix gives the
membership value of each point in each cluster. The sum of membership
values of a point in different clusters sums to 1.

1.2 CT-means

I propose a fuzzy clustering algorithm CT-means. This algorithm computes
the membership value of a point only for the t clusters whose centroids are
closest to it. The membership value of that point for all other clusters is 0.
Note that t need not be the same for all points. It can also vary across itera-
tions. The CT-means algorithm is a generalization of the K-means algorithm
(t = 1) and C-means algorithm (t = c).

For any fuzzy clustering algorithm, a point’s membership value is sup-
posed to be high for clusters closer to a point and low for clusters far away
from a point. In practice [citation needed], with fuzzy clustering algorithms
like C-means, the membership value of a point is significant only for a few
nearby clusters and is very close to zero for all other clusters. This is the core
idea behind the CT-means algorithm. CT-means is expected to perform well
when t for a point is chosen to be equal to or slightly more than the number
of significant clusters for that point. In this paper, we discuss the CT-means
algorithm and strategies to choose an appropriate value of t for each point.

2 Overview of Algorithm

The n points are represented by a n by d matrix X where the ith row xi
represents a d-dimensional point. The membership matrix is a n by c matrix
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U where the entry in ith row at jth column (ui,j) is the membership value of
the ith point in the jth cluster. The c centroids are represented by a c by d
matrix C where the ith row ci represents the coordinates of the ith centroid
(in d dimensions).

Since t need not be the same for different points, let ti denote the value
of t for the ith point.

The CT-means algorithm, like the C-means and K-means algorithms,
involves several iterations. First, c initial centroids are chosen. Then in each
iteration, the membership matrix is calculated and centroids are updated.
The centroids will stabilize over time and the algorithm can be stopped then.
Any stopping criterion used in C-means can also be used in CT-means.

In each iteration, this is how membership values are calculated and cen-
troids are updated:

ui,j =

 ti∑
k=1

(
|xi − cj|
|xi − c′i,k|

)β
−1 =

|xi − cj|−β
ti∑
k=1

|xi − c′i,k|−β

cj =

n∑
i=1

umi,jxi

n∑
i=1

umi,j

where β = 2
m−1 and c′i,k is the kth closest centroid to xi.

3 Objective Function and Convergence

CT-means tries to minimize the objective function

n∑
i=1

c∑
j=1

umi,j|xi − cj|
2

This is the same objective function as C-means, but the algorithm is
different because there is a constraint on the membership matrix (that for
each point, all clusters except the t nearest clusters will have membership
value 0 for that point).
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3.1 Centroid Update

During centroid calculation, we have to choose the centroids in such a way
that the objective function is minimized while keeping the membership ma-
trix fixed.

Define

Sj =
n∑
k=1

umk,j pi,j =
umi,j
Sj

Therefore,

n∑
i=1

pi,j = 1

Also define

µj =
n∑
i=1

pi,jxi σ2
j =

n∑
i=1

pi,j|xi − µj|2

n∑
i=1

pi,j|xi − cj|2

=
n∑
i=1

pi,j|(xi − µj)− (cj − µj)|2

=
n∑
i=1

pi,j(|xi − µj|2 + |cj − µj|2 − 2(xi − µj) · (cj − µj))

=

(
n∑
i=1

pi,j|xi − µj|2
)

+

(
n∑
i=1

pi,j|cj − µj|2
)

− 2

(
n∑
i=1

pi,j(xi − µj) · (cj − µj))

)

= σ2
j +

(
|cj − µj|2

n∑
i=1

pi,j

)
− 2(cj − µj) ·

(
n∑
i=1

pi,j(xi − µj)

)
= σ2

j + |cj − µj|2
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Objective function

=
c∑
j=1

n∑
i=1

umi,j|xi − cj|2

=
c∑
j=1

Sj

n∑
i=1

pi,j|xi − cj|2

=
c∑
j=1

Sj(σ
2
j + |cj − µj|2)

=
c∑
j=1

Sjσ
2
j +

c∑
j=1

Sj|cj − µj|2

The second sum is non-negative and we can make it zero by setting cj
equal to µj for all 1 ≤ j ≤ c. Therefore, this minimizes the objective function.
This gives us the update equation for centroids which implies that centroid
update in CT-means decreases the objective function in each iteration.

3.2 Membership Matrix Update

Let’s focus our attention on calculating the ith row of the membership matrix.
For convenience, assume that cj is the jth closest centroid to x. This assump-
tion will not affect correctness since numbering of clusters is arbitrary and
we can renumber them to enforce this assumption. Also, let x = xi, t = ti
and uj = ui,j for convenience.

The contribution of a point to an objective function is given by

c∑
j=1

umj |x− cj|2

Let’s call this the partial objective function (POF). I will prove that a mem-
bership matrix row update reduces the POF. Therefore a membership matrix
update reduces the objective function.

Using the rearrangement inequality, we can see that the centroid closer
to x should have a higher membership value than a centroid far away from
x if we want to minimize the POF.

A corollary of this is that only the t centroids closest to x can have non-
zero membership values under the constraint that there can be at most t
non-zero membership values for a point.
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Therefore, the POF can also be written as

t∑
j=1

umj |x− cj|2

Attempting to minimize the POF gives us a constrained optimization

problem where the constraint is
t∑

j=1

uj = 1.

Using Lagrange’s method of multipliers, we get the Lagrangian as

(
t∑

j=1

umj |x− cj|2
)
− λ

(
t∑

j=1

uj − 1

)

=

(
t∑

j=1

(
umj |x− cj|2 − λuj

))
− λ

On taking partial derivatives and setting them to 0, we get these equa-
tions:

mum−1j |x− cj|2 = λ
t∑

j=1

uj = 1

On solving these equations, we get

uj =

(
t∑

k=1

(
|x− cj|
|x− ck|

) 2
m−1

)−1

=
|x− cj|

−2
m−1

t∑
k=1

|x− ck|
−2

m−1

=
|x− cj|

−2
m−1

st

where st =
t∑

k=1

|x− ck|
−2

m−1 .

This comes out to be the same as the membership update equation for
CT-means algorithm. Therefore, the membership update equation for CT-
means algorithm leads us to a critical point.

I’ll now prove that this point is a local minimum.
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Proof. First, observe that

um−1j |x− cj|2 = s1−mt

Now let’s move an infinitesimally small distance away from the critical

point. To do that, change uj to uj + δj, where
t∑

j=1

δj = 0 to ensure that the

changed membership values add up to 1.

Change in POF

=
t∑

j=1

((uj + δj)
m − umj )|x− cj|2

=
t∑

j=1

(
mum−1j δj +

(
m

2

)
um−2j δ2j +O(δ3j )

)
|x− cj|2

(using binomial theorem)

=
t∑

j=1

mum−1j δj|x− cj|2 +
t∑

j=1

(
m

2

)
um−2j |x− cj|2δ2j +O(δ3j )

=
t∑

j=1

msm−1t δj +
t∑

j=1

(
m

2

)
um−2j |x− cj|2δ2j +O(δ3j )

= 0 +
t∑

j=1

(
m

2

)
um−2j |x− cj|2δ2j +O(δ3j )

Here the sum of δ2j terms is always positive if m 6= 2. When m = 2,
There are no higher order δj terms. Therefore, the change in POF is non-
negative when moving slightly away from the critical point. This means that
the critical point is a point of local minimum.

To prove that this point is a global minimum we must prove that values
of POF at the boundaries are higher.

The constraints on membership values are 0 ≤ uj ≤ 1. Therefore, a
boundary condition is achieved when uj is either 0 or 1 for some j. If uk is
set to 1 for some k, all other uj will be 0 (because they must sum to 1). The
minimum POF over all k at this boundary will therefore be the same as the
minimum POF at t = 1. If uk is set to 0 for some k, we have t− 1 non-zero
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values of uj to optimize. The minimum POF over all k at this boundary will
therefore be the same as the minimum POF at t− 1.

Now we’ll prove using mathematical induction on t that the membership
update equation gives us the globally minimized POF.

Proof. Let P (r) be the predicate ‘POF is globally minimized according to
the membership update equation when t = r’.

Base case:
When t = 1, only u1 can be positive. Since all uj should sum to 1, u1 = 1.
According to the membership update equation

u1 =
|x− c1|

−2
m−1

t∑
k=1

|x− ck|
−2

m−1

=
|x− c1|

−2
m−1

|x− c1|
−2

m−1

= 1

Therefore, the membership update equation gets us to global minimum
at t = 1. Hence P (1).

Inductive step:
Let r ≥ 2. Assume P (r − 1) is true (induction hypothesis).
The POF at boundary conditions for t = r is the same as either the

minimum POF at t = 1 or the minimum POF at t = r − 1. Since t = r − 1
is a more relaxed condition than t = 1 (or the same condition if r = 2),
the minimum POF at t = 1 is less than or equal to the minimum POF at
t = r − 1.

Therefore, to prove that the membership update equation gives us the
minimum POF at t = r, we have to prove that the POF obtained using
the membership update equation at t = r is less than the minimum POF at
t = r− 1. According to induction hypothesis, minimum POF at t = r− 1 is
given by the membership update equation with t = r − 1.

Let vj be the membership value at t = r − 1 and uj be the membership
value at t = r.
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POF at t = r

=
r∑
j=1

umj |x− cj|2

=
r∑
j=1

(um−1j |x− cj|2)uj

=
r∑
j=1

s1−mr uj

= s1−mr

r∑
j=1

uj

= s1−mr

Similarly, POF at t = r − 1 equals s1−mr−1 .

sr =
r∑

k=1

|x− ck|
−2

m−1

= sr−1 + |x− ck|
−2

m−1

≥ sr−1

That implies s1−mr ≤ s1−mr−1 (∵ m < 1), which implies that POF at t = r
using the membership update equation is less than the POF at t = r − 1
using the membership update equation.

This means that POF is minimized at t = r by using the membership
update equation.

By the principle of mathematical induction, it can be concluded that the
membership update equation minimizes the POF for all values of t.

Since the membership values obtained using the membership update
equation minimizes the objective function for fixed centroids, membership
matrix update lowers the objective function in each iteration.

Since both centroid update and membership matrix update lower the
objective function in each iteration, CT-means converges to a local minimum
of the objective function.
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4 Detailed Description of Algorithm

Since many entries in the membership matrix are expected to be 0, the
membership matrix is stored as a sparse matrix.

4.1 Centroid Updates

cj =

n∑
i=1

umi,jxi

n∑
i=1

umi,j

All non-zero entries in the jth column of the membership matrix are used
to calculate cj. Therefore, time taken for centroid updates is O(tnd). Here t
is the average ti over all points.

4.2 Membership Matrix Updates

Let’s focus our attention on calculating the ith row of the membership matrix.
Let’s denote the ith point by x. For convenience, assume that cj is the jth

closest centroid to x and let uj = ui,j. This assumption will not affect
correctness since numbering of clusters is arbitrary and we can renumber
them to enforce this assumption.

uj =

(
t∑

k=1

(
|x− cj|
|x− ck|

)β)−1
=
|x− cj|−β
t∑

k=1

|x− ck|−β

To calculate this efficiently, we need to find the t nearest neighbors of x
in the set of centroids.

A naive way to do this is to calculate distance of x from all c clusters, get
the smallest t of them in sorted order and use that to calculate membership
values. This will take time O(cd+ t log c) if we use a heap.

A better method is to use a data structure which can calculate nearest
neighbors of x without calculating all c distances. Examples of such data
structures include KD-trees [citation needed], R-trees [citation needed] and
ball trees [citation needed]. In this paper, we only consider KD-trees because
they are simple to analyze and implement.
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If the value of t is known beforehand, we can simply query the data
structure for the nearest t neighbors. But we can’t do that if the value of t is
decided adaptively. For example, instead of getting the t nearest neighbors
in one go, one could get neighbors iteratively in decreasing order of closeness
to x. When we reach a neighbor which is so far away that we expect its
membership value to be very low, we stop getting more neighbors.

Getting neighbors iteratively can be much more expensive than getting
them in a single query, depending on the data structure used for nearest
neighbor queries. We could settle for a compromise by getting neighbors in
batches.

5 KD-Tree for Nearest Neighbor Queries

A KD-tree is a space partitioning data structure for organizing points in d-
dimensional space. A KD-tree is a binary tree in which every node v contains
a d-dimensional point value(v). It can be thought of as a generalization of a
binary search tree to d-dimensional points.

Let value(v)i be the ith coordinate of value(v). Every internal node u at
depth h in a KD-tree satisfies the following property:

• For each node v in the left sub-tree of u, value(v)h%d ≤ value(u)h%d.

• For each node v in the right sub-tree of u, value(v)h%d ≥ value(u)h%d.

(Here a%b is the remainder obtained when a is divided by b.)
Therefore, the root node splits points along the first dimension, the nodes

at the next level split points along the second dimension, and so on, cyclically
repeating dimensions.

5.1 Construction

Construction of a KD-tree is best done in an offline manner. The median
of the points along the first dimension will be calculated. The median will
become the root node, all points with first dimension less than the median
will be part of the left sub-tree and the rest will go to the right sub-tree. Now
each sub-tree will be created recursively, but the splitting dimension will be
incremented.

Let the height of the tree be h and number of nodes in the tree be n.
Since the difference between the number of nodes in the two sub-trees is at
most 1, the tree will be balanced. Therefore, h ≈ log2 n.
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Number levels from 0 onward. Therefore, the root is at level 0, it’s
children are at level 1, and so on. Number of points in the first i levels

=
i−1∑
j=0

2j = 2i−1. Therefore, n− (2i−1) points reach level i during construc-

tion for further splitting.

Time taken to construct level i

= Time taken to split data at each node in level i

≈ 2i
(

Time taken to split
n− 2i + 1

2i
points

)
≤ 2ik

(
n− 2i + 1

2i
log2

n− 2i + 1

2i

)
(finding median of n items takes O(n log2 n) time)

= k(n− 2i + 1)(log2(n− 2i + 1)− i)
≤ kn log2 n

Since there are around log2 n levels, construction time is O(n log2
2 n).

5.2 Auxiliary data

For efficient nearest neighbor queries, we require upper and lower bound
on coordinates of points for each dimension. Therefore, each node u will
store two vectors cmin(u) and cmax(u). For each node v in the sub-tree
at u, cmin(u)i ≤ value(v)i ≤ cmax(u)i. For every leaf node v, cmin(v)i =
value(v)i = cmax(v)i.

Let min(x, y, z) denote the component-wise minimum of 3 points x, y, z.
Similarly, let max(x, y, z) denote the component-wise maximum of 3 points
x, y, z.

For a node u with children v1 and v2,

• cmin(u) = min(value(u), cmin(v1), cmin(v2))

• cmax(u) = max(value(u), cmax(v1), cmax(v2))

This is how cmin and cmax will be calculated for each node in the KD-
tree. The tree will now occupy O(nd) space and time to calculate auxiliary
data is O(nd).
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5.3 Iterative Nearest Neighbors

The following algorithm will output points in descending order of proxim-
ity from an input point x upon successive calls. It is therefore a stateful
algorithm. The state will be captured by a min-heap.

The measure of proximity that a KD-tree will support is Minkowski norm.
Minkowski norm between points x and y is defined as

|x− y| =
d∑
i=1

|xi − yi|w

where w is a hyper-parameter. Let d(v) be the norm of x from a node v.

d(v) =
d∑
i=1


cmin(v)i − xi if xi < cmin(v)i

0 if cmin(v)i ≤ xi ≤ cmax(v)i

xi − cmax(v)i if xi > cmax(v)i


w

The norm of a point x from a node v is a lower bound on the minimum
Minkowski norm between x and a point in the sub-tree of v.

The min-heap will store nodes of the KD-tree and points. The heap-
priority of a node v is d(v). The heap-priority of a point is it’s distance from
x. Let r be the root of the KD-tree. Initially the heap contains just one node
- r.

A heap-update operation is defined as this algorithm:

if heap is empty then
return NULL;

else
Pop an item v from the heap.
if v is a point then

return v.
else if v is a leaf node then

return value(v).
else

insert value(v) and v’s children in the heap.
return v.

end if
end if
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To get a nearest neighbor, repeatedly apply the heap-update operation
till the returned value is a point.

Worst-case time complexity of a heap-update operation is O(log2 n+ d).
Let l(n) be the number of leaves in a balanced KD-tree with n nodes. The

maximum possible number of heap-update operations equals the number of
points in the KD-tree plus the number of internal nodes in the KD-tree. This
is equal to 2n− l(n).

l(n) satisfies the recurrence relation

l(n) = l

(⌊
n− 1

2

⌋)
+ l

(⌈
n− 1

2

⌉)
with base cases l(0) = 0 and l(1) = 1.
By using strong mathematical induction, it can be proved that

n+ 1

3
≤ l(n) ≤ n+ 1

2
∀n ≥ 1

Hence, the maximum number of heap-update operations is at most 5n
3

.

5.4 Efficiency

The number of heap-update operations executed until k nearest neighbors
are obtained equals the number of heap update operations required to be
executed for k points to be returned. In the best case, most of the first few
heap-update operations will return points. In the worst case, heap-update
operations will continually return nodes and only start returning points when
there are hardly any nodes left in the heap.

In a KD-tree on n points in d dimensions, iteratively getting the k nearest
neighbors of a point x in descending order of proximity takes time O(n(d +
log2 n)) in the worst case. In the best case, time taken is O(k(d+ log2 n)).

But even in the best case, this algorithm is useful for CT-means only if
time taken is less than C-means. Time taken for a row update for C-means
is O(cd) and time taken in the best case for CT-means is O(t(d + log2 c)).
So this algorithm is useful only if we stop at a sufficiently small value of t,
i.e. the number of significant clusters for a point is small. The number of
significant clusters will have to be less than a constant fraction of cd

d+log2 c
.
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6 Strategies for choosing t

6.1 Fixed-t strategy

As per this strategy, t is fixed and same for all points. Choosing t equal to
1 gives the K-means algorithm.

Generally a higher t will be better if the number of dimensions is high.
Sometimes, there could be domain-specific information which can help make
a better choice.

There are drawbacks of this strategy. First, we might use a very low value
of t for some points or a very high value for t for some points or both. Using a
very low t means that the algorithm fails to consider some nearby significant
clusters. Using a very high value of t would increase computational cost.

An advantage of this strategy is that it doesn’t require iterative nearest
neighbor queries. Some data structures may be very good at non-iterative
nearest neighbor queries but not so good at iterative nearest neighbor queries.
Those data structures can be used with this strategy.

K-means is a very popular clustering algorithm, which is an instance of
this strategy with t = 1. Other fixed values of t might give similar or better
results in practice.

6.2 Variable-t strategy

This strategy gets nearest-neighbors iteratively, stopping when it sees ap-
propriate. Assume that when it stopped, t nearest neighbors were obtained.
After that, it computes the membership value of a point for those t nearest
centroids.

Let cj be the jth closest centroid to a point x. Let uj be the corre-
sponding membership value chosen by the CT-means algorithm and µj be
the corresponding membership value chosen by the C-means algorithm. Let
ej = |uj − µj| be the jth error. We will now discuss a strategy which will
choose a value of t such that ej ≤ α for all j.

µj =
|x− cj|−β
c∑

k=1

|x− ck|−β
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uj =


|x− cj|−β
t∑

k=1

|x− ck|−β
if j ≤ t

0 if j > t

vj =



|x− cj|−β(
t∑

k=1

|x− ck|−β
)

+ (c− t)|x− ct|−β
if j ≤ t

|x− ct|−β(
t∑

k=1

|x− ck|−β
)

+ (c− t)|x− ct|−β
if j > t

Lemma 6.1. j ≤ t⇒ vj ≤ µj ≤ uj

Proof.

(k > t⇒ |x− ck| ≥ |x− ct|)
⇒ (k > t⇒ 0 ≤ |x− ck|−β ≤ |x− ct|−β)

⇒
c∑

k=t+1

0 ≤
c∑

k=t+1

|x− ck|−β ≤
c∑

k=t+1

|x− ct|−β

⇒ 0 ≤
c∑

k=t+1

|x− ck|−β ≤ (c− t)|x− ct|−β

⇒
t∑

k=1

|x− ck|−β ≤
c∑

k=1

|x− ck|−β ≤
t∑

k=1

|x− ck|−β + (c− t)|x− ct|−β

⇒ |x− cj|−β
t∑

k=1

|x− ck|−β + (c− t)|x− ct|−β
≤ |x− cj|−β

c∑
k=1

|x− ck|−β
≤ |x− cj|−β

t∑
k=1

|x− ck|−β

⇒ (j ≤ t⇒ vj ≤ µj ≤ uj)

Theorem 6.2.

c∑
j=1

uj =
c∑
j=1

µj =
c∑
j=1

vj = 1
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Proof.

c∑
j=1

uj =
t∑

j=1

uj =
t∑

j=1

|x− cj|−β
t∑

k=1

|x− ck|−β
=

t∑
j=1

|x− cj|−β

t∑
k=1

|x− ck|−β
= 1

c∑
j=1

µj =
c∑
j=1

|x− cj|−β
c∑

k=1

|x− ck|−β
=

c∑
j=1

|x− cj|−β

c∑
k=1

|x− ck|−β
= 1

c∑
j=1

vj =
t∑

j=1

vj +
c∑

j=t+1

vj

=
t∑

j=1

|x− cj|−β(
t∑

k=1

|x− ck|−β
)

+ (c− t)|x− ct|−β

+
c∑

j=t+1

|x− ct|−β(
t∑

k=1

|x− ck|−β
)

+ (c− t)|x− ct|−β

= 1

Since u and v sum to 1, they lie between 0 and 1 and they decrease with
increasing distance to a centroid, u and v are valid membership functions.
Additionally, u satisfies the constraint of having at most t non-zero values.

Theorem 6.3. j > t⇒ µj ≤ ut

Proof.

j > t

⇒ |x− cj| ≥ |x− ct|
⇒ |x− cj|−β ≤ |x− ct|−β

⇒ µj ≤ µt

⇒ µj ≤ ut (by lemma 6.1)
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Theorem 6.4. uj − µj ≤ u1 − v1

Proof.

j ≤ t

⇒ |uj − µj|
≤ |uj − vj| (by lemma 6.1)

=
|x− cj|−β

|x− c1|−β
(u1 − v1)

=
µj
µ1

(u1 − v1)

≤ (u1 − v1) (µ1 ≥ µj)

Theorem 6.5. ut, u1 and −v1 decrease with increasing t.

Proof.

P =
t∑

k=1

|x− ck|−β d = |x− ct|−β

d1 = |x− c1|−β h = d− |x− ct+1|−β

d− h = |x− ct+1|−β > 0

|x− ct| ≤ |x− ct+1| ⇒ |x− ct|−β ≥ |x− ct+1|−β

⇒ d ≥ d− h⇒ h ≥ 0

f(t) = ut =
|x− ct|−β
t∑

k=1

|x− ck|−β

=
d

P
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f(t+ 1) =
|x− ct+1|−β
t+1∑
k=1

|x− ck|−β

=
d− h

P + (d− h)

f(t)− f(t+ 1)

=
d

P
− d− h
P + (d− h)

=
d(d− h) + Ph

(P + (c− t)(d− h))(P + (c− t)d)

Since d(d−h) > 0 and Ph > 0, f(t)−f(t+1) > 0. Therefore, ut increases
with t.

Denominator of v1 = g(t)

=
t∑

k=1

|x− ck|−β + (c− t)|x− ct|−β

= P + (c− t)d

g(t+ 1)

=
t+1∑
k=1

|x− ck|−β + (c− t− 1)|x− ct+1|−β

= (P + (d− h)) + (c− t− 1)(d− h)

= P + (c− t)(d− h)

g(t)− g(t+ 1)

= (P + (c− t)d)− (P + (c− t)(d− h))

= (c− t)h > 0

Since denominator of v1 decreases with t and numerator of v1 is indepen-
dent of t, v1 increases with t. Therefore, −v1 decreases with t.
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Numerator of u1 is independent of t and denominator of u1 increases with
t. Therefore, u1 decreases with t.

Using theorem 6.5, u1 − v1 and ut both decrease as t increases. So by
using theorem 6.3 and theorem 6.4, we get this stopping condition:

(u1 − v1 ≤ α) and (ut ≤ α)

Getting nearest neighbors incrementally means that t will be increased
from 1 to at most c. Whenever t is incremented, we can update the value of
u1, v1 and ut in O(1).

6.3 Stronger variable-t strategy

We can also obtain a variable-t strategy which imposes an even stronger
constraint on errors. We will now discuss a t-choosing strategy which ensures
that:

• The sum of first t errors is less than α.

• The sum of last c− t errors is less than α.

Theorem 6.6.

t∑
j=1

(uj − µj) =
c∑

j=t+1

µj ≤
c∑

j=t+1

vj =
t∑

j=1

(uj − vj)

Proof.

t∑
j=1

(uj − µj) =
t∑

j=1

uj −
t∑

j=1

µj = 1−
t∑

j=1

µj

=
c∑
j=1

µj −
t∑

j=1

µj =
c∑

j=t+1

µj

t∑
j=1

(uj − vj) =
t∑

j=1

uj −
t∑

j=1

vj = 1−
t∑

j=1

vj

=
c∑
j=1

vj −
t∑

j=1

vj =
c∑

j=t+1

vj
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(j ≤ t⇒ vj ≤ µj ≤ uj)

⇒
t∑

j=1

vj ≤
t∑

j=1

µj

⇒ 1−
t∑

j=1

µj ≤ 1−
t∑

j=1

vj

⇒
c∑
j=1

µj −
t∑

j=1

µj ≤
c∑
j=1

vj −
t∑

j=1

vj

⇒
c∑

j=t+1

µj ≤
c∑

j=t+1

vj

St =
c∑

j=t+1

vj =
(c− t)|x− ct|−β

t∑
k=1

|x− ck|−β + (c− t)|x− ct|−β

Theorem 6.7. St decreases as t increases.

Proof.

P =
t∑

k=1

|x− ck|−β d = |x− ct|−β h = d− |x− ct+1|−β

|x− ct| ≤ |x− ct+1| ⇒ |x− ct|−β ≥ |x− ct+1|−β

⇒ d ≥ d− h⇒ h ≥ 0

St =
(c− t)|x− ct|−β

t∑
k=1

|x− ck|−β + (c− t)|x− ct|−β

=
(c− t)d

P + (c− t)d
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St+1 =
(c− t− 1)|x− ct+1|−β

t+1∑
k=1

|x− ck|−β + (c− t− 1)|x− ct+1|−β

=
(c− t− 1)(d− h)

(P + (d− h)) + (c− t− 1)(d− h)

=
(c− t− 1)(d− h)

P + (c− t)(d− h)

St − St+1

=
(c− t)d

P + (c− t)d
− (c− t− 1)(d− h)

P + (c− t)(d− h)

=
(c− t)d(P + (c− t)(d− h))− (c− t− 1)(d− h)(P + (c− t)d)

(P + (c− t)(d− h))(P + (c− t)d)

=
hP (c− t) + (c− t)d(d− h) + P (d− h)

(P + (c− t)(d− h))(P + (c− t)d)

Since all terms in the numerator are non-negative, St − St+1 > 0.

Theorem 6.6 states that the sum of errors in the first t terms and the sum
of errors in the remaining c− t terms is the same and they are both less than
St. Also, theorem 6.7 states that St decreases with increasing t. Therefore,
St ≤ α (α is a constant) can be used as a stopping criterion.

Getting nearest neighbors incrementally means that t will be increased
from 1 to at most c. Whenever t is incremented, we can update the value of
St in O(1).

7 Conclusion

Updating centroids takes time O(ndt). t is the average number of significant
clusters per point. For C-means, this time becomes O(ndc). Therefore, CT-
means is at least as fast as C-means in this step. (On ignoring difference
between access speed of sparse matrix vs dense matrix)

In C-means, updating membership values takes time O(ncd). CT-means
without nearest neighbor queries takes time O(n(cd+ t log2 c)) for member-
ship matrix update.
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CT-means with nearest neighbor queries takes time O(c(d + log2
2 c)) for

constructing a KD-tree and O(np(d+ log2 c)) for updating membership ma-
trix. Here p is the maximum number of heap-update operations, which is at
least t and at most 3c

2
.

The practical utility of this algorithm depends on two factors:

1. The value of t: A higher value of t requires more computation. Whether
a low value of t can give good clusters or good convergence would
depend a lot on the dataset. For variable-t strategy, the clusters and
convergence rate are expected to be very similar to C-means, but the
running time will be high if the average number of significant clusters
for a point is high. In general, number of significant clusters is expected
to be high for high-dimensional data [proof needed].

2. The efficiency of nearest-neighbors querying: If the data structure for
finding nearest neighbors is not efficient, which is the case with KD-
trees and other popular data structures, then running time will be
high. In the worst case, most algorithms would scan all points in the
data structure. This is especially true for high-dimensional data. In
practice, KD-trees are not useful when number of dimensions is greater
than around 20 [citation needed]. The efficiency of nearest neighbor
queries generally varies across datasets.

Therefore, whether CT-means is faster than C-means in practice can be
determined only by experimentation. The theoretical results only claim that
it’s not terribly slow compared to C-means.
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