
Advanced Algorithms and Complexity
Course Project Report

Eklavya Sharma (2014A7PS0130P)

26 November 2017

Abstract

This document explores the problem of primality testing. It in-
cludes an analysis of the AKS algorithm and a comparison of random-
ized compositeness-proving algorithms.

Contents

1 Introduction 2

2 Analysis of AKS 2
2.1 Preliminary arguments . 3
2.2 Important lemmas from ‘Primes is in P’ 3
2.3 Framework for correctness of my algorithm 4
2.4 Lower bound on size of G* . 4

3 Comparison of Compositeness-Proving Algorithms 6
3.1 Probable primes . 6
3.2 Miller-Rabin vs Solovay-Strassen 7
3.3 The Baillie-PSW Algorithm 7

4 Conclusion 8

1

1 Introduction

This report explores the problem of primality testing. Given a positive integer
n, the task is to determine whether n is prime or composite.

The Agarwal-Kayal-Saxena (AKS) algorithm [1] is the first general deter-
ministic unconditional polynomial-time algorithm for primality testing. But
despite being a polynomial-time algorithm, it is very slow.

In this report I have attempted to to devise a faster variant of the AKS
algorithm. I did this by parametrizing the AKS test, i.e. I replaced a con-
stant in the algorithm by a parameter while preserving the correctness of
the algorithm. Then I tried to find a value of the parameter which would
yield the best time complexity. I proved that the constant in the original
algorithm was the best value of that parameter, so I failed to improve the
algorithm. This report describes my parametrized algorithm.

I then studied randomized compositeness-proving algorithms. I have com-
pared the Miller-Rabin algorithm [3], the Solovay-Strassen algorithm [4] and
the Baillie-PSW primality test [2].

2 Analysis of AKS

This is a parametrized variant of the AKS algorithm, where w and n0 are
the parameters.

0. If n ≤ n0, return output using a lookup table.

1. If n = ab for a ∈ N and b > 1, return composite.

2. Find the smallest r such that order of n in Z∗r > logw n.

3. If 1 < gcd(a, n) < n for some a ≤ r, return composite.

4. If n ≤ r, return prime.

5. For a from 1 to l = b
√
φ(r)) log

w
2 nc,

if (x+ a)n 6≡ xn + a (mod xr − 1, n), return composite.

6. Return prime.

The original AKS algorithm uses w = 2 and n0 = 1.
Suppose this algorithm is correct for a value of w less than 2. Then in step

2, a smaller r can be found. The worst-case running time of the algorithm is
dominated by step 5. Reducing the value of r will reduce the running time

2

of steps 2, 3 and 5 and therefore reduce the worst-case running time of the
entire algorithm.

I will now try to find constraints on the value of w imposed by the cor-
rectness of this algorithm.

2.1 Preliminary arguments

If n is prime, steps 0, 1 and 3 can never return ‘composite’. Step 5 will never
return composite due to the follow lemma (proof is in [1]).

Lemma 2.1. For n ≥ 2 and gcd(a, n) = 1,

n is prime ⇐⇒ (x+ a)n ≡ xn + a (mod n)

If steps 0, 1 and 3 return ‘composite’, it is easy to see that n is indeed
composite. Therefore, to prove correctness of this algorithm, the only thing
left is to prove that when step 5 does not return ‘composite’, n is indeed
prime.

gcd(n, r) = 1 because otherwise step 3 or 4 would decide primality of n.
Let or(n) denote the order of n in Z∗r. Since or(n) > 1, there must exist

a prime divisor p of n such that or(p) > 1. p > r, since otherwise step 3 or
4 would decide about the primality of n. r > logw n, since or(n) > logw n.
Since gcd(n, r) = 1, p, n ∈ Z∗r. The numbers p and r will be fixed throughout
the discussion of the AKS algorithm.

2.2 Important lemmas from ‘Primes is in P’

Let us define the following sets:

• I =

{(
n
p

)i
pj|i, j ≥ 0

}
.

• P =
{∏l

a=0(x+ a)ea|ea ≥ 0
}

, where l < p.

• G = I mod r. G is a subgroup of Z∗r generated by n and p, since
gcd(p, r) = 1 and gcd(n, r) = 1.

• G∗ = P mod (h(x), p) where h(x) is an irreducible factor of xr − 1
modulo p. G∗ is a subgroup of F = Fp/h(x) generated by x, x +
1, . . . , x+ l. x, x+ 1, . . . , x+ l are distinct because l < p.

Let |G| = t. The following bounds on |G∗| are proven in [1].

3

• |G∗| ≥
(
t+l
t−1

)
.

• When n is not a power of p, |G∗| ≤ n
√
t.

These bounds hold under this condition:

∀a ∈ [1, l], (x+ a)n ≡ xn + a (mod xr − 1, n)

2.3 Framework for correctness of my algorithm

To prove the correctness of our algorithm, we must prove that when step 5
does not output ‘composite’, n is indeed prime.

When step 5 does not output ‘composite’, we have ∀a ∈ [1, l], (x+ a)n ≡
xn + a (mod xr − 1, n) for l = b

√
φ(r) log

w
2 nc. This is the prerequisite

condition for bounds on |G∗|.
We must first prove that this value of l is appropriate. As per the defini-

tion of P , l should be less than p. l = b
√
φ(r) log

w
2 nc ≤ b

√
r
√
rc = r < p,

so we are good to go.
In the original paper by AKS [1], the authors used the first bound on |G∗|

to prove that |G∗| > n
√
t. According to the second bound, this implies that

n is a power of p. Since we have ensured in step 1 of the algorithm that n is
not of the form ab where b ≥ 2, we can conclude that n is prime. This proves
the correctness of the AKS algorithm.

I’m going to do the same thing for my variant of AKS, but my proof of
|G∗| > n

√
t will be different because of a different value of l and different

bounds on t.

2.4 Lower bound on |G∗|
Since G is generated by p and n and or(n) > logw n, t ≥ blogw nc+ 1. Since
G is a subset of Z∗r, t ≤ φ(r). Therefore, blogw nc+ 1 ≤ t ≤ φ(r).

Let q = b
√
t log

w
2 nc

t > logw n

⇒
√
t > log

w
2 n

⇒ t >
√
t log

w
2 n

⇒ t ≥ b
√
t log

w
2 nc+ 1 = q + 1

4

Let n ≥ 22
1
w (∵ we only care about large values of n)

⇒ log n ≥ 2
1
w

⇒ logw n ≥ 2

⇒ blogw nc ≥ 2

q = b
√
t log

w
2 nc

≥ blogw nc ≥ 2(
2q+1
q

)
> 2q+1 when q ≥ 2. This can be proved easily using mathematical

induction.

(
Hint:

(2q+3
q+1)
2q+2 =

(2q+1
q)

2q+1

(
1 + q+1

q+2

))

|G∗| ≥
(
t+ l

t− 1

)
=

(
t+ l

l + 1

)
≥
(
q + l + 1

l + 1

)
=

(
q + l + 1

q

)
≥
(

2q + 1

q

)
(l = b

√
φ(r) log

w
2 nc ≥ b

√
t log

w
2 nc = q)

> 2q+1

= 2b
√
t log

w
2 nc+1

> 2
√
t log

w
2 n

= n
√
t2
√
t(log

w
2 n−logn)

For |G∗| > n
√
t, we have to choose w so that 2

√
t(log

w
w n−logn) ≥ 1.

5

⇒ 2
√
t(log

w
2 n−logn) ≥ 1

⇒
√
t(log

w
2 n− log n) ≥ 0

⇒ log
w
2 n ≥ log n

⇒ log
w
2
−1 n ≥ 1

⇒
(w

2
− 1
)

log log n ≥ 0

⇒ w ≥ 2 (log log n > 0 ∵ n > 2)

Since w ≥ 2 for the algorithm to be correct, the attempt to improve the
running time of the AKS algorithm failed.

Perhaps using a value of l other than b
√
φ(r) log

w
2 nc could have given

better results, but I didn’t find that amenable to mathematical analysis.

3 Comparison of Compositeness-Proving Al-

gorithms

3.1 Probable primes

All such algorithms that we discuss here either declare n to be ‘composite’
or ‘probably prime’. A composite probable prime is called a pseudoprime.

We assume here that n is odd. Let n− 1 = 2sd.
With respect to a base a coprime to n:

• n is a Fermat probable prime iff an−1 ≡ 1 (mod n).

• n is an Euler-Jacobi probable prime iff a
n−1
2 ≡

(
a
n

)
(mod n).

• n is a strong probable prime iff ad ≡ 1 (mod n) or ad2
r ≡ −1 (mod n)

for some 0 ≤ r < s.

These conditions can be used as tests of compositeness by first randomly
choosing a value a, checking whether it is coprime to n and then checking
whether n is a probable prime with respect to base a. The Fermat primality
test tests for Fermat probable primes. The Solovay-Strassen test tests for
Euler-Jacobi probable primes. The Miller-Rabin test tests for strong proba-
ble primes.

6

3.2 Miller-Rabin vs Solovay-Strassen

Let’s define the ‘primality-strength’ of n as

|{a|gcd(a, n) = 1 and n is a probable prime for base a}|
n

Euler-Jacobi-primality-strength and Strong-primality-strength are defined
analogously. For a compositeness test which uses the concept of proba-
ble primes as defined above, the error probability of the algorithm for n
equals the primality-strength of n when n is composite. Solovay and Strassen
claimed [4] that a composite number has a Euler-Jacobi-primality-strength
less than 1

2
. Miller and Rabbin claimed [3] that a composite number has a

Strong-primality-strength less than 1
4
.

The Miller-Rabin algorithm requires one more multiplication than the
Solovay-Strassen algorithm for calculating powers of a. But the Solovay-
Strassen algorithm additionally involves calculating the Jacobi symbol

(
a
n

)
,

which takes O(log min(a, n)M(log min(a, n))) time. This implies that both
these algorithms have comparable running times. So given their error bounds,
the Miller-Rabin algorithm seems better.

However, the error bounds may not be tight for most numbers. The
average-case error probability is given by the average value of the primality-
strength, and the error bounds may not be a good indication of that.

Pomerance et al prove in [2] that the strong-primality-strength of n is less
than or equal to the Euler-Jacobi-primality-strength of n for all composite
n. This result makes the Miller-Rabin algorithm a clear winner against the
Solovay-Strassen algorithm.

3.3 The Baillie-PSW Algorithm

The Baillie-PSW [2] test is a compositeness-proving heuristic algorithm which
works by running 2 compositeness tests. It returns ‘composite’ if one of these
tests returns ‘composite’ and returns ‘probably prime’ otherwise. The first
test is the Miller-Rabin test with base 2 and the second test is the Lucas test
with base 2. This makes the Baillie-PSW test a deterministic algorithm. In
some variations of Baillie-PSW, a stronger variant of the Lucas test is used
or different (either fixed or randomly-selected) bases are used.

It is not known whether the Baillie-PSW algorithm always returns the
correct result. However, there are no known counterexamples (i.e. the set of
strong-pseudoprimes and lucas-pseudoprimes have no known overlap), which
is what makes Baillie-PSW test a good choice in practice.

7

4 Conclusion

The AKS algorithm is a deterministic polynomial-time algorithm for primal-
ity testing. It is however so slow that it is not used in practice. Therefore,
almost all primality tests used in practice are randomized. The Solovay-
Strassen algorithm was one of the first randomized algorithms for primality-
testing. But it has been superseded by the Miller-Rabin algorithm and the
Baillie-PSW algorithm, which are now very popular algorithms for primality
testing.

References

[1] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p.
Annals of mathematics, pages 781–793, 2004.

[2] Carl Pomerance, John L Selfridge, and Samuel S Wagstaff. The pseu-
doprimes to 25× 109. Mathematics of Computation, 35(151):1003–1026,
1980.

[3] Michael O Rabin. Probabilistic algorithm for testing primality. Journal
of number theory, 12(1):128–138, 1980.

[4] Robert Solovay and Volker Strassen. A fast monte-carlo test for primality.
SIAM journal on Computing, 6(1):84–85, 1977.

8

	Introduction
	Analysis of AKS
	Preliminary arguments
	Important lemmas from `Primes is in P'
	Framework for correctness of my algorithm
	Lower bound on size of G*

	Comparison of Compositeness-Proving Algorithms
	Probable primes
	Miller-Rabin vs Solovay-Strassen
	The Baillie-PSW Algorithm

	Conclusion

